Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(8): 1172-1183, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39134664

RESUMO

Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate. For example, in the plant field, membrane domains are often referred to as nanodomains, nanoclusters, microdomains, lipid rafts, membrane rafts, signalling platforms, foci or liquid-ordered membranes without any clear rationale. In the context of plant-microbe interactions, microdomains have sometimes been used to refer to the large area at the plant-microbe interface. Some of these terms have partially overlapping meanings at best, but they are often used interchangeably in the literature. This situation generates much confusion and limits conceptual progress. There is thus an urgent need for us as a scientific community to resolve these semantic and conceptual controversies by defining an unambiguous nomenclature of membrane domains. In this Review, experts in the field get together to provide explicit definitions of plasma membrane domains in plant systems and experimental guidelines for their study. We propose that plasma membrane domains should not be considered on the basis of their size alone but rather according to the biological system being considered, such as the local membrane environment or the entire cell.


Assuntos
Membrana Celular , Microdomínios da Membrana , Plantas , Terminologia como Assunto , Microdomínios da Membrana/metabolismo , Membrana Celular/metabolismo
2.
Plant Physiol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056549

RESUMO

In eukaryotes, a small subset of membrane lipids, the phosphoinositides (PIs), exert regulatory effects on membrane-associated processes with profound impact on the organism, and PIs are relevant also for the physiology and development of plants. The PI, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) has emerged as an important regulatory player in plants, and in recent years this lipid has received substantial attention. This Update Review focuses on our current understanding of how PtdIns(4,5)P2 exerts its regulatory functions, how biosynthesis and degradation of this important regulatory lipid is controlled, and how PtdIns(4,5)P2 is linked to upstream and downstream elements within plant signalling networks.

3.
Plant J ; 117(1): 242-263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37805827

RESUMO

The unsaturation of phospholipids influences the function of membranes. In Arabidopsis thaliana, the oleoyl Δ12-desaturase FAD2 converts oleic (18:1Δ9 ) to linoleic acid (18:2Δ9,12 ) and influences phospholipid unsaturation in different cellular membranes. Despite its importance, the precise localization of Arabidopsis FAD2 has not been unambiguously described. As FAD2 is thought to modify phospholipid-associated fatty acids at the endoplasmic reticulum (ER), from where unsaturates are distributed to other cellular sites, we hypothesized that FAD2 locates to ER subdomains enabling trafficking of lipid intermediates through the secretory pathway. Fluorescent FAD2 fusions used to test this hypothesis were first assessed for functionality by heterologous expression in yeast (Saccharomyces cerevisiae), and in planta by Arabidopsis fad2 mutant rescue upon ectopic expression from an intrinsic FAD2 promoter fragment. Light sheet fluorescence, laser scanning confocal or spinning disc microscopy of roots, leaves, or mesophyll protoplasts showed the functional fluorescence-tagged FAD2 variants in flattened donut-shaped structures of ~0.5-1 µm diameter, in a pattern not resembling mere ER association. High-resolution imaging of coexpressed organellar markers showed fluorescence-tagged FAD2 in a ring-shaped pattern surrounding ER-proximal Golgi particles, colocalizing with pre-cis-Golgi markers. This localization required the unusual C-terminal retention signal of FAD2, and deletion or substitutions in this protein region resulted in relaxed distribution and diffuse association with the ER. The distinct association of FAD2 with pre-cis-Golgi stacks in Arabidopsis root and leaf tissue is consistent with a contribution of FAD2 to membrane lipid homeostasis through the secretory pathway, as verified by an increased plasma membrane liquid phase order in the fad2 mutant.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Fosfolipídeos/metabolismo
4.
Plant Cell Physiol ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37991227

RESUMO

Monogalactosyldiacylglycerol (MGDG) is the main lipid constituent of thylakoids and a structural component of photosystems and photosynthesis-related proteo-lipid complexes in green tissues. Previously reported changes in MGDG abundance upon stress treatments are hypothesized to reflect mobilization of MGDG-based polyunsaturated lipid intermediates to maintain extraplastidial membrane integrity. While exchange of lipid intermediates between compartmental membranes is well documented, physiological consequences of mobilizing an essential thylakoid lipid, such as MGDG, for an alternative purpose are not well understood. Arabidopsis seedlings exposed to mild (50 mM) salt treatment displayed significantly increased abundance of both MGDG and the extraplastidial lipid, phosphatidylcholine (PC). Interestingly, similar increases in MGDG and PC were observed in Arabidopsis fad3 mutant seedlings defective in endoplasmic reticulum (ER)-localized linolenic acid formation, in which compensatory plastid-to-ER-directed mobilization of linolenic acid-containing intermediates takes place. The postulated (salt) or evident (fad3) plastid-ER exchange of intermediates concurred with altered thylakoid function according to parameters of photosynthetic performance. While salt treatment of wild-type seedlings inhibited photosynthetic parameters in a dose-dependent manner, interestingly, untreated fad3 mutants did not show overall reduced photosynthetic quantum yield. By contrast, we observed a reduction specifically of non-photochemical quenching (NPQ) under high light, representing only part of observed salt effects. The decreased NPQ in the fad3 mutant was accompanied by reduced activity of the xanthophyll cycle, leading to a reduced concentration of the NPQ-effective pigment zeaxanthin. The findings suggest that altered ER-located fatty acid unsaturation and ensuing inter-organellar compensation impacts on the function of specific thylakoid enzymes, rather than globally affecting thylakoid function.

5.
Commun Biol ; 6(1): 552, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217784

RESUMO

The oxoglutarate dehydrogenase complex (OGDHc) participates in the tricarboxylic acid cycle and, in a multi-step reaction, decarboxylates α-ketoglutarate, transfers succinyl to CoA, and reduces NAD+. Due to its pivotal role in metabolism, OGDHc enzymatic components have been studied in isolation; however, their interactions within the endogenous OGDHc remain elusive. Here, we discern the organization of a thermophilic, eukaryotic, native OGDHc in its active state. By combining biochemical, biophysical, and bioinformatic methods, we resolve its composition, 3D architecture, and molecular function at 3.35 Å resolution. We further report the high-resolution cryo-EM structure of the OGDHc core (E2o), which displays various structural adaptations. These include hydrogen bonding patterns confining interactions of OGDHc participating enzymes (E1o-E2o-E3), electrostatic tunneling that drives inter-subunit communication, and the presence of a flexible subunit (E3BPo), connecting E2o and E3. This multi-scale analysis of a succinyl-CoA-producing native cell extract provides a blueprint for structure-function studies of complex mixtures of medical and biotechnological value.


Assuntos
Ciclo do Ácido Cítrico , Complexo Cetoglutarato Desidrogenase , Complexo Cetoglutarato Desidrogenase/química , Complexo Cetoglutarato Desidrogenase/metabolismo , Acil Coenzima A/metabolismo , Citoplasma
6.
Methods Mol Biol ; 2604: 237-247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773238

RESUMO

Signaling molecules are crucial to perceive and translate intra- and extracellular cues. Phosphoinositides and the proteins responsible for their biosynthesis (e.g., lipid kinases) are known to influence the (re)organization of cytoskeletal elements, namely, through interaction with actin and actin-binding proteins. Here we describe methods to functionally characterize lipid kinases and their phosphoinositide metabolites in relation to actin dynamics. These methods include GFP-tagged protein expression followed by time-resolved live imaging and quantitative image analysis. When combined with biochemical and interaction studies, these methods can be used to correlate signaling with actin dynamics, microfilament assembly, and intracellular trafficking, linking structure and function.


Assuntos
Actinas , Tubo Polínico , Actinas/metabolismo , Tubo Polínico/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Fosfolipídeos/metabolismo
7.
Biochimie ; 203: 65-76, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243173

RESUMO

Pollen tubes display polarized tip-growth and are a model to study the coordination of vesicular trafficking and cytoskeletal control. The molecular details of how dynamic actin filaments associate with the plasma membrane are currently unclear. In Arabidopsis thaliana, plasma membrane attachment of actin filaments may be mediated by four myosins representing the plant-specific myosin-subclass VIII, which localize to the plasma membrane and display only minor motor-activity. Here we explore the mode of membrane attachment of the pollen-expressed class VIII-myosins ATM2 and VIII-B through interaction with anionic membrane phospholipids. A fluorescent mCherry-ATM2-fusion decorated plasma membrane-peripheral actin filaments when expressed in tobacco pollen tubes, consistent with a role of class VIII-myosins at the membrane-cytoskeleton interface. As recombinant proteins, class VIII-myosins are prone to aggregation and to proteolysis, creating a challenge for their biochemical characterization. We describe a purification scheme for guanidinium chloride (GdmCl)-denatured recombinant proteins, followed by a renaturation protocol to obtain pure, soluble protein fragments of ATM2 and VIII-B. The fragments represent the C-terminal tail and coiled-coil-regions and lack the N-terminal actin-binding regions, IQ or motor domains. Based on lipid-overlays and liposome-sedimentation assays, the fragments of ATM2 and VIII-B bind anionic phospholipids. Small polybasic regions at the extreme C-termini were sufficient for lipid-binding of the respective protein fragments. When expressed in tobacco pollen tubes, a fluorescence-tagged variant of ATM2 lacking its lipid-binding region displayed substantially reduced plasma membrane association. The data indicate that class VIII-myosins may facilitate actin-plasma membrane attachment through interaction with anionic phospholipids, mediated by polybasic C-terminal lipid-binding domains.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Actinas/metabolismo , Fosfolipídeos/metabolismo , Miosinas/química , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Pólen/metabolismo , Nicotiana/metabolismo , Membrana Celular/metabolismo , Proteínas Recombinantes/metabolismo
8.
Angew Chem Int Ed Engl ; 61(46): e202205726, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36115020

RESUMO

α-Synuclein (α-syn) is an intrinsically disordered protein (IDP) that undergoes liquid-liquid phase separation (LLPS), fibrillation, and forms insoluble intracellular Lewy bodies in neurons, which are the hallmark of Parkinson's Disease (PD). Neurotoxicity precedes the formation of aggregates and might be related to α-syn LLPS. The molecular mechanisms underlying the early stages of LLPS are still elusive. To obtain structural insights into α-syn upon LLPS, we take advantage of cross-linking/mass spectrometry (XL-MS) and introduce an innovative approach, termed COMPASS (COMPetitive PAiring StatisticS). In this work, we show that the conformational ensemble of α-syn shifts from a "hairpin-like" structure towards more "elongated" conformational states upon LLPS. We obtain insights into the critical initial stages of LLPS and establish a novel mass spectrometry-based approach that will aid to solve open questions in LLPS structural biology.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Neurônios/metabolismo , Conformação Molecular
9.
Curr Opin Plant Biol ; 67: 102218, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504191

RESUMO

The membranes of plant cells serve diverse physiological roles, which are defined largely by the localized and dynamic recruitment of proteins. Signaling lipids, such as phosphoinositides, can aid protein recruitment to the plasma membrane via specific recognition of their head groups and influence vesicular trafficking, cytoskeletal dynamics and other processes, with ramifications for plant tissue architecture and development. Phosphoinositide abundance is dynamically regulated. Recent advances indicate various levels of control during development or upon environmental triggers, including transcriptional or posttranslational regulation of enzymes balancing biogenesis and degradation, or the nano-organization of membranes into self-organizing physiologically distinct microenvironments. As patterns of interlinked mechanisms emerge, the horizons of what we do not understand become more and more defined.


Assuntos
Fosfatidilinositóis , Plantas , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Fosfatidilinositóis/metabolismo , Plantas/metabolismo , Transdução de Sinais/fisiologia
12.
Plant Cell ; 33(3): 642-670, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955493

RESUMO

Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes of Arabidopsis thaliana and tobacco (Nicotiana tabacum) and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2 effects are specified is unclear. In tobacco pollen tubes, spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labeling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, the PIP5Ks AtPIP5K2-EYFP and NtPIP5K6-EYFP display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2-EYFP and NtPIP5K6-EYFP variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, active PI4P 5-kinase variants stabilized actin when targeted to nanodomains, suggesting a role of nanodomain-associated PtdIns(4,5)P2 in actin regulation. This notion is further supported by interaction and proximity of nanodomain-associated AtPIP5K2 with the Rho-GTPase NtRac5, and by its functional interplay with elements of Rho of plants signaling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2 functions to coordinate cytoskeletal dynamics and secretion.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Nicotiana/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/genética , Regulação da Expressão Gênica de Plantas , Tubo Polínico/genética , Tubo Polínico/metabolismo , Nicotiana/genética , Proteínas rho de Ligação ao GTP/genética
13.
Methods Mol Biol ; 2295: 379-389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34047988

RESUMO

The determination of phosphoinositide molecular species in plant material is challenging because of their low abundance concurrent with a very high abundance of other membrane lipids, such as plastidial glycolipids. Phosphoinositides harbor an inositol headgroup which carries one or more phosphate groups at different positions of the inositol, linked to diacylglycerol via a phosphodiester. Thus, a further analytical challenge is to distinguish the different inositol-phosphate headgroups as well as the fatty acids of the diacylglycerol backbone. The method presented in this chapter expands on previous protocols for phosphoinositide analysis by employing chromatographic enrichment of phospholipids and their separation from other, more abundant lipid classes, before analysis. Lipids extracted from plant material are first separated by solid-phase adsorption chromatography into fractions containing neutral lipids, glycolipids, or phospholipids. Lipids from the phospholipid fraction are then separated by thin-layer chromatography (TLC) according to their characteristic head groups, and the individual phosphatidylinositol-monophosphates and phosphatidylinositol-bisphosphates are isolated. Finally, the fatty acids associated with each isolated phosphatidylinositol-monophosphate or phosphatidylinositol-bisphosphate are analyzed in a quantitative fashion using gas chromatography (GC). The analysis of phosphoinositides by this combination of methods provides a cost-efficient and reliable alternative to lipidomics approaches requiring more extensive instrumentation.


Assuntos
Cromatografia/métodos , Lipídeos de Membrana/química , Fosfatidilinositóis/análise , Adsorção , Cromatografia Gasosa/métodos , Cromatografia em Camada Fina/métodos , Ácidos Graxos/química , Fosfatos de Fosfatidilinositol/química , Fosfatidilinositóis/química , Plantas/química , Solventes
14.
New Phytol ; 229(1): 469-487, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32762082

RESUMO

Potato (Solanum tuberosum) plants susceptible to late blight disease caused by the oomycete Phytophthora infestans display enhanced resistance upon infiltration with the pathogen-associated molecular pattern (PAMP), Pep-13. Here, we characterize a potato gene similar to Arabidopsis 5-phosphatases which was identified in transcript arrays performed to identify Pep-13 regulated genes, and termed StIPP. Recombinant StIPP protein specifically dephosphorylated the D5-position of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 ) in vitro. Other phosphoinositides or soluble inositolpolyphosphates were not converted. When transiently expressed in tobacco (Nicotiana tabacum) pollen tubes, a StIPP-YFP fusion localized to the subapical plasma membrane and antagonized PtdIns(4,5)P2 -dependent effects on cell morphology, indicating in vivo functionality. Phytophthora infestans-infection of N. benthamiana leaf epidermis cells resulted in relocalization of StIPP-GFP from the plasma membrane to the extra-haustorial membrane (EHM). Colocalizion with the effector protein RFP-AvrBlb2 at infection sites is consistent with a role of StIPP in the plant-oomycete interaction. Correlation analysis of fluorescence distributions of StIPP-GFP and biosensors for PtdIns(4,5)P2 or phosphatidylinositol 4-phosphate (PtdIns4P) indicate StIPP activity predominantly at the EHM. In Arabidopsis protoplasts, expression of StIPP resulted in the stabilization of the PAMP receptor, FLAGELLIN-SENSITIVE 2, indicating that StIPP may act as a PAMP-induced and localized antagonist of PtdIns(4,5)P2 -dependent processes during plant immunity.


Assuntos
Phytophthora infestans , Solanum tuberosum , Moléculas com Motivos Associados a Patógenos , Fosfatidilinositóis , Monoéster Fosfórico Hidrolases , Doenças das Plantas
15.
Plant J ; 104(2): 416-432, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32666545

RESUMO

Polyamines, such as putrescine, spermidine and spermine (Spm), are low-molecular-weight polycationic molecules present in all living organisms. Despite their implication in plant cellular processes, little is known about their molecular mode of action. Here, we demonstrate that polyamines trigger a rapid increase in the regulatory membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2 ), and that this increase is required for polyamine effects on K+ efflux in Arabidopsis roots. Using in vivo 32 Pi -labelling of Arabidopsis seedlings, low physiological (µm) concentrations of Spm were found to promote a rapid PIP2 increase in roots that was time- and dose-dependent. Confocal imaging of a genetically encoded PIP2 biosensor revealed that this increase was triggered at the plasma membrane. Differential 32 Pi -labelling suggested that the increase in PIP2 was generated through activation of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity rather than inhibition of a phospholipase C or PIP2 5-phosphatase activity. Systematic analysis of transfer DNA insertion mutants identified PIP5K7 and PIP5K9 as the main candidates involved in the Spm-induced PIP2 response. Using non-invasive microelectrode ion flux estimation, we discovered that the Spm-triggered K+ efflux response was strongly reduced in pip5k7 pip5k9 seedlings. Together, our results provide biochemical and genetic evidence for a physiological role of PIP2 in polyamine-mediated signalling controlling K+ flux in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Poliaminas/metabolismo , Poliaminas/farmacologia , Espermina/metabolismo
16.
Nat Commun ; 11(1): 2170, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358503

RESUMO

Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Resistência à Doença/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Parede Celular/química , Parede Celular/metabolismo , Endossomos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/metabolismo , Plasmodioforídeos/patogenicidade , Via Secretória/genética , Solo , Proteínas de Transporte Vesicular/metabolismo
17.
Plants (Basel) ; 9(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260253

RESUMO

Polar tip growth of pollen tubes is regulated by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which localizes in a well-defined region of the subapical plasma membrane. How the PtdIns(4,5)P2 region is maintained is currently unclear. In principle, the formation of PtdIns(4,5)P2 by PI4P 5-kinases can be counteracted by phospholipase C (PLC), which hydrolyzes PtdIns(4,5)P2. Here, we show that fluorescence-tagged tobacco NtPLC3 displays a subapical plasma membrane distribution which frames that of fluorescence-tagged PI4P 5-kinases, suggesting that NtPLC3 may modulate PtdIns(4,5)P2-mediated processes in pollen tubes. The expression of a dominant negative NtPLC3 variant resulted in pollen tube tip swelling, consistent with a delimiting effect on PtdIns(4,5)P2 production. When pollen tube morphologies were assessed as a quantitative read-out for PtdIns(4,5)P2 function, NtPLC3 reverted the effects of a coexpressed PI4P 5-kinase, demonstrating that NtPLC3-mediated breakdown of PtdIns(4,5)P2 antagonizes the effects of PtdIns(4,5)P2 overproduction in vivo. When analyzed by spinning disc microscopy, fluorescence-tagged NtPLC3 displayed discontinuous membrane distribution omitting punctate areas of the membrane, suggesting that NtPLC3 is involved in the spatial restriction of plasma membrane domains also at the nanodomain scale. Together, the data indicate that NtPLC3 may contribute to the spatial restriction of PtdIns(4,5)P2 in the subapical plasma membrane of pollen tubes.

18.
New Phytol ; 224(2): 833-847, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318449

RESUMO

The phosphoinositide kinase PIP5K6 has recently been identified as a target for the mitogen-activated protein kinase (MAPK) MPK6. Phosphorylation of PIP5K6 inhibited the production of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 ), impacting membrane trafficking and cell expansion in pollen tubes. Here, we analyzed whether MPK6 regulated PIP5K6 in vegetative Arabidopsis cells in response to the pathogen-associated molecular pattern (PAMP) flg22. Promoter-ß-glucuronidase analyses and quantitative real-time reverse transcription polymerase chain reaction data show PIP5K6 expressed throughout Arabidopsis tissues. Upon flg22 treatment of transgenic protoplasts, the PIP5K6 protein was phosphorylated, and this modification was reduced for a PIP5K6 variant lacking MPK6-targeted residues, or in protoplasts from mpk6 mutants. Upon flg22 treatment of Arabidopsis plants, phosphoinositide levels mildly decreased and a fluorescent reporter for PtdIns(4,5)P2 displayed reduced plasma membrane association, contrasting with phosphoinositide increases reported for abiotic stress responses. Flg22 treatment and chemical induction of the upstream MAPK kinase, MKK5, decreased phosphatidylinositol 4-phosphate 5-kinase activity in mesophyll protoplasts, indicating that the flg22-activated MAPK cascade limited PtdIns(4,5)P2 production. PIP5K6 expression or PIP5K6 protein abundance changed only marginally upon flg22 treatment, consistent with post-translational control of PIP5K6 activity. PtdIns(4,5)P2 -dependent endocytosis of FM 4-64, PIN2 and the NADPH-oxidase RbohD were reduced upon flg22 treatment or MKK5 induction. Reduced RbohD-endocytosis was correlated with enhanced ROS production. We conclude that MPK6-mediated phosphorylation of PIP5K6 limits the production of a functional PtdIns(4,5)P2 pool upon PAMP perception.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Moléculas com Motivos Associados a Patógenos/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Relação Dose-Resposta a Droga , Flagelina/química , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Moléculas com Motivos Associados a Patógenos/administração & dosagem , Moléculas com Motivos Associados a Patógenos/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Protoplastos/metabolismo
19.
Elife ; 82019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30672734

RESUMO

Myelin serves as an axonal insulator that facilitates rapid nerve conduction along axons. By transmission electron microscopy, a healthy myelin sheath comprises compacted membrane layers spiraling around the cross-sectioned axon. Previously we identified the assembly of septin filaments in the innermost non-compacted myelin layer as one of the latest steps of myelin maturation in the central nervous system (CNS) (Patzig et al., 2016). Here we show that loss of the cytoskeletal adaptor protein anillin (ANLN) from oligodendrocytes disrupts myelin septin assembly, thereby causing the emergence of pathological myelin outfoldings. Since myelin outfoldings are a poorly understood hallmark of myelin disease and brain aging we assessed axon/myelin-units in Anln-mutant mice by focused ion beam-scanning electron microscopy (FIB-SEM); myelin outfoldings were three-dimensionally reconstructed as large sheets of multiple compact membrane layers. We suggest that anillin-dependent assembly of septin filaments scaffolds mature myelin sheaths, facilitating rapid nerve conduction in the healthy CNS.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas Contráteis/fisiologia , Bainha de Mielina/metabolismo , Septinas/metabolismo , Animais , Sistema Nervoso Central/patologia , Proteínas Contráteis/genética , Camundongos , Dobramento de Proteína
20.
New Phytol ; 222(3): 1434-1446, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30628082

RESUMO

Diacylglycerol kinases (DGKs) play a major role in the production of phosphatidic acid (PtdOH) and were implicated in endomembrane trafficking and signalling cascades. In plants, the role of DGKs is less clear, as PtdOH seems to arise mostly from phospholipase D activity. Here, we investigated the function of the Arabidopsis gene encoding DGK4, which is highly expressed in pollen. In vitro, pollen tubes from homozygous dgk4 plants showed normal morphology, but reduced growth rate and altered stiffness and adhesion properties (revealed by atomic force microscopy). In vivo, dgk4 pollen was able to fertilize wild-type ovules, but self-pollination in dgk4 plants led to fewer seeds and shorter siliques. Phenotypic analysis revealed that the dgk4 mutation affects not only the male germ line but also the vegetative tissue. DGK4-green fluorescent protein fusion imaging revealed a cytosolic localization with a slightly higher signal in the subapical or apical region. dgk4 pollen tubes were found to exhibit perturbations in membrane recycling, and lipid analysis revealed a minor increase of PtdOH concomitant with decreased phosphatidylcholine, compared with wild-type. In vitro, DGK4 was found to exhibit kinase and guanylyl cyclase activity. Quantitative PCR data revealed downregulation of genes related to actin dynamics and phosphoinositide metabolism in mutant pollen, but upregulation of the DGK6 isoform. Altogether, these results are discussed considering a role of DGK4 in signalling cross-talk.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Diacilglicerol Quinase/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Adesividade , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Diacilglicerol Quinase/genética , Módulo de Elasticidade , Endocitose , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Fenótipo , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA