Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(21): eadg5702, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235661

RESUMO

Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout collection, have produced the largest, richest, and most systematic phenotypic description of any organism. However, integrative analyses of this rich data source have been virtually impossible because of the lack of a central data repository and consistent metadata annotations. Here, we describe the aggregation, harmonization, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset, we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phenotypic similarity and intergenic distance, which suggests that gene positions in both yeast and human genomes are optimized for function.


Assuntos
Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética
2.
Cold Spring Harb Protoc ; 2016(1): pdb.prot088880, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729909

RESUMO

The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set.


Assuntos
Bases de Dados Genéticas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Redes Reguladoras de Genes , Animais , Internet , Mapeamento de Interação de Proteínas , Leveduras/metabolismo
3.
Cold Spring Harb Protoc ; 2016(1): pdb.top080754, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729913

RESUMO

The Biological General Repository for Interaction Datasets (BioGRID) is a freely available public database that provides the biological and biomedical research communities with curated protein and genetic interaction data. Structured experimental evidence codes, an intuitive search interface, and visualization tools enable the discovery of individual gene, protein, or biological network function. BioGRID houses interaction data for the major model organism species--including yeast, nematode, fly, zebrafish, mouse, and human--with particular emphasis on the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe as pioneer eukaryotic models for network biology. BioGRID has achieved comprehensive curation coverage of the entire literature for these two major yeast models, which is actively maintained through monthly curation updates. As of September 2015, BioGRID houses approximately 335,400 biological interactions for budding yeast and approximately 67,800 interactions for fission yeast. BioGRID also supports an integrated posttranslational modification (PTM) viewer that incorporates more than 20,100 yeast phosphorylation sites curated through its sister database, the PhosphoGRID.


Assuntos
Bases de Dados Genéticas/estatística & dados numéricos , Redes Reguladoras de Genes , Mapeamento de Interação de Proteínas , Animais , Humanos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Leveduras/genética , Leveduras/metabolismo
4.
Nucleic Acids Res ; 43(Database issue): D470-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25428363

RESUMO

The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749,912 interactions as drawn from 43,149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes , Mapeamento de Interação de Proteínas , Ácido Araquidônico/metabolismo , Doença/genética , Humanos , Internet
5.
Nucleic Acids Res ; 41(Database issue): D816-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23203989

RESUMO

The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the model plant Arabidopsis thaliana. A number of themed curation projects in areas of biomedical importance are also supported. BioGRID has established collaborations and/or shares data records for the annotation of interactions and phenotypes with most major model organism databases, including Saccharomyces Genome Database, PomBase, WormBase, FlyBase and The Arabidopsis Information Resource. BioGRID also actively engages with the text-mining community to benchmark and deploy automated tools to expedite curation workflows. BioGRID data are freely accessible through both a user-defined interactive interface and in batch downloads in a wide variety of formats, including PSI-MI2.5 and tab-delimited files. BioGRID records can also be interrogated and analyzed with a series of new bioinformatics tools, which include a post-translational modification viewer, a graphical viewer, a REST service and a Cytoscape plugin.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes , Mapeamento de Interação de Proteínas , Arabidopsis/genética , Arabidopsis/metabolismo , Humanos , Internet , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Interface Usuário-Computador
6.
Curr Protoc Bioinformatics ; Chapter 6: Unit 6.11, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21400696

RESUMO

Inferring a protein's function by homology is a powerful tool for biologists. The Princeton Protein Orthology Database (P-POD) offers a simple way to visualize and analyze the relationships between homologous proteins in order to infer function. P-POD contains computationally generated analysis distinguishing orthologs from paralogs combined with curated published information on functional complementation and on human diseases. P-POD also features an applet, Notung, for users to explore and modify phylogenetic trees and generate their own ortholog/paralogs calls. This unit describes how to search P-POD for precomputed data, how to find and use the associated curated information from the literature, and how to use Notung to analyze and refine the results.


Assuntos
Bases de Dados de Proteínas , Genômica/métodos , Proteínas/química , Homologia de Sequência de Aminoácidos , Evolução Molecular , Filogenia , Proteínas/classificação , Proteínas/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
7.
PLoS One ; 2(8): e766, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17712414

RESUMO

Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Genômica/métodos , Algoritmos , Animais , Evolução Molecular , Humanos , Internet , Dados de Sequência Molecular , Filogenia , Tubulina (Proteína)/classificação , Tubulina (Proteína)/genética , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA