Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Biophys J ; 52(1-2): 39-51, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36786921

RESUMO

From the discovery of the first membrane-interacting polymer, styrene maleic-acid (SMA), there has been a rapid development of membrane solubilising polymers. These new polymers can solubilise membranes under a wide range of conditions and produce varied sizes of nanoparticles, yet there has been a lack of broad comparison between the common polymer types and solubilising conditions. Here, we present a comparative study on the three most common commercial polymers: SMA 3:1, SMA 2:1, and DIBMA. Additionally, this work presents, for the first time, a comparative characterisation of polymethacrylate copolymer (PMA). Absorbance and dynamic light scattering measurements were used to evaluate solubilisation across key buffer conditions in a simple, adaptable assay format that looked at pH, salinity, and divalent cation concentration. Lipid-polymer nanoparticles formed from SMA variants were found to be the most susceptible to buffer effects, with nanoparticles from either zwitterionic DMPC or POPC:POPG (3:1) bilayers only forming in low to moderate salinity (< 600 mM NaCl) and above pH 6. DIBMA-lipid nanoparticles could be formed above a pH of 5 and were stable in up to 4 M NaCl. Similarly, PMA-lipid nanoparticles were stable in all NaCl concentrations tested (up to 4 M) and a broad pH range (3-10). However, for both DIBMA and PMA nanoparticles there is a severe penalty observed for bilayer solubilisation in non-optimal conditions or when using a charged membrane. Additionally, lipid fluidity of the DMPC-polymer nanoparticles was analysed through cw-EPR, showing no cooperative gel-fluid transition as would be expected for native-like lipid membranes.


Assuntos
Nanopartículas , Polímeros , Dimiristoilfosfatidilcolina , Cloreto de Sódio , Bicamadas Lipídicas , Estireno , Maleatos
2.
Sci Adv ; 7(46): eabj5255, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757782

RESUMO

The fungal plasma membrane H+-ATPase Pma1 is a vital enzyme, generating a proton-motive force that drives the import of essential nutrients. Autoinhibited Pma1 hexamers in the plasma membrane of starving fungi are activated by glucose signaling and subsequent phosphorylation of the autoinhibitory domain. As related P-type adenosine triphosphatases (ATPases) are not known to oligomerize, the physiological relevance of Pma1 hexamers remained unknown. We have determined the structure of hexameric Pma1 from Neurospora crassa by electron cryo-microscopy at 3.3-Å resolution, elucidating the molecular basis for hexamer formation and autoinhibition and providing a basis for structure-based drug development. Coarse-grained molecular dynamics simulations in a lipid bilayer suggest lipid-mediated contacts between monomers and a substantial protein-induced membrane deformation that could act as a proton-attracting funnel.

3.
Biochemistry ; 59(25): 2328-2339, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32428401

RESUMO

CYBASC proteins are ascorbate (AscH-) reducible, diheme b-containing integral membrane cytochrome b561 proteins (cytb561), which are proposed to be involved in AscH- recycling and facilitation of iron absorption. Two distinct CYBASC paralogs from the plant Arabidopsis thaliana, Atcytb561-A (A-paralog) and Atcytb561-B (B-paralog), have been found to differ in their visible-spectral characteristics and their interaction with AscH- and ferric iron chelates. A previously determined crystal structure of the B-paralog provides the first insights into the structural organization of a CYBASC member and implies hydrogen bonding between the substrate AscH- and the conserved lysine residues at positions 77 (B-K77) and 81 (B-K81). The function of the highly conserved tyrosine at position 70 (B-Y70) is not obvious in the crystal structure, but its localization indicates the possible involvement in proton-coupled electron transfer. Here we show that B-Y70 plays a major role in the modulation of the oxidation-reduction midpoint potential of the high-potential heme, EM(bH), as well as in AscH- oxidation. Our results support the involvement of the functionally conserved B-K77 in the stabilization of the dianion Asc2-. These findings are supported by the crystal structure of the B-paralog, but a comparative biochemical and biophysical characterization of the A- and B-paralogs implied distinct and more complex functions of the corresponding residues A-Y69 and A-K76 in the A-paralog. Our results emphasize the need for a high-resolution crystal structure of the A-paralog to illuminate the differences in functional organization between the two paralogs.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Grupo dos Citocromos b/química , Lisina/química , Tirosina/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/isolamento & purificação , Grupo dos Citocromos b/isolamento & purificação , Transporte de Elétrons , Heme/química , Alinhamento de Sequência
4.
Cell Chem Biol ; 27(6): 678-697.e13, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32386594

RESUMO

The identification of SERCA (sarco/endoplasmic reticulum calcium ATPase) as a target for modulating gain-of-function NOTCH1 mutations in Notch-dependent cancers has spurred the development of this compound class for cancer therapeutics. Despite the innate toxicity challenge associated with SERCA inhibition, we identified CAD204520, a small molecule with better drug-like properties and reduced off-target Ca2+ toxicity compared with the SERCA inhibitor thapsigargin. In this work, we describe the properties and complex structure of CAD204520 and show that CAD204520 preferentially targets mutated over wild-type NOTCH1 proteins in T cell acute lymphoblastic leukemia (T-ALL) and mantle cell lymphoma (MCL). Uniquely among SERCA inhibitors, CAD204520 suppresses NOTCH1-mutated leukemic cells in a T-ALL xenografted model without causing cardiac toxicity. This study supports the development of SERCA inhibitors for Notch-dependent cancers and extends their application to cases with isolated mutations in the PEST degradation domain of NOTCH1, such as MCL or chronic lymphocytic leukemia (CLL).


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Receptor Notch1/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA