Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(10): 6569-6580, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33719426

RESUMO

KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SOS1/metabolismo , Afatinib/química , Afatinib/metabolismo , Afatinib/uso terapêutico , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Proteína SOS1/agonistas , Proteína SOS1/antagonistas & inibidores , Proteína SOS1/genética
2.
ChemMedChem ; 16(9): 1420-1424, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33275320

RESUMO

Aberrant WNT pathway activation, leading to nuclear accumulation of ß-catenin, is a key oncogenic driver event. Mutations in the tumor suppressor gene APC lead to impaired proteasomal degradation of ß-catenin and subsequent nuclear translocation. Restoring cellular degradation of ß-catenin represents a potential therapeutic strategy. Here, we report the fragment-based discovery of a small molecule binder to ß-catenin, including the structural elucidation of the binding mode by X-ray crystallography. The difficulty in drugging ß-catenin was confirmed as the primary screening campaigns identified only few and very weak hits. Iterative virtual and NMR screening techniques were required to discover a compound with sufficient potency to be able to obtain an X-ray co-crystal structure. The binding site is located between armadillo repeats two and three, adjacent to the BCL9 and TCF4 binding sites. Genetic studies show that it is unlikely to be useful for the development of protein-protein interaction inhibitors but structural information and established assays provide a solid basis for a prospective optimization towards ß-catenin proteolysis targeting chimeras (PROTACs) as alternative modality.


Assuntos
Bibliotecas de Moléculas Pequenas/química , beta Catenina/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , beta Catenina/metabolismo
4.
Molecules ; 25(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973223

RESUMO

The synthesis of the alkaloid (-)-monophyllidin is described. The molecule is a hybrid of xanthoxyline and (S)-proline, accessible in one-step through a Mannich reaction. In the solid-state, defined structural arrangements with different physical properties are formed. Single crystal X-ray diffraction revealed structures of six distinct polymorphs. In the crystalline state, the alkaloid can host small polar molecules (preferably water), while the (S)-proline moiety is present in the zwitterionic state. Combined with the chelate, which is already present in the xanthoxyline substructure, an ideal disposition for multiple hydrogen bond networks evolve. Therefore, highly water-soluble polymorphs of monophyllidin can form. This structural flexibility explains the many faces of the molecule in terms of structure as well as analytical data. Furthermore, speculations about the biological role of the molecule, with regard to the manifold interactions with water, are presented.


Assuntos
Alcaloides/química , Acetonitrilas/química , Alcaloides/síntese química , Cristalografia por Raios X , Ésteres/síntese química , Ésteres/química , Etanol/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Oxigênio/química , Solventes/química , Água/química
5.
Proc Natl Acad Sci U S A ; 116(32): 15823-15829, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31332011

RESUMO

The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be "undruggable," between switch I and II on RAS; 1 is mechanistically distinct from covalent KRASG12C inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas/química , Proteínas Proto-Oncogênicas p21(ras)/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Nanopartículas/química
6.
Chemistry ; 25(52): 12037-12041, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31231840

RESUMO

Natural products have proven to be a rich source of molecular architectures for drugs. Here, an integrated approach to natural product screening is proposed, which uncovered eight new natural product scaffolds for KRAS-the most frequently mutated oncogenic driver in human cancers, which has remained thus far undrugged. The approach combines aspects of virtual screening, fragment-based screening, structure-activity relationships (SAR) by NMR, and structure-based drug discovery to overcome the limitations in traditional natural product approaches. By using our approach, a new "snugness of fit" scoring function and the first crystal-soaking system of the active form of KRASG12D , the protein-ligand X-ray structures of a tricyclic indolopyrrole fungal alkaloid and an indoloisoquinolinone have been successfully elucidated. The natural product KRAS hits discovered provide fruitful ground for the optimization of highly potent natural-product-based inhibitors of the active form of oncogenic RAS. This integrated approach for screening natural products also holds promise for other "undruggable" targets.

7.
ChemMedChem ; 14(1): 88-93, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30458062

RESUMO

Mouse double minute 2 (MDM2) is a main and direct inhibitor of the crucial tumor suppressor p53. Reports from initial clinical trials showed that blocking this interaction with a small-molecule inhibitor can have great value in the treatment of cancer for patients with p53 wild-type tumors; however, it also revealed dose-limiting hematological toxicities and drug-induced resistance as main issues. To overcome the former, an inhibitor with superior potency and pharmacokinetic properties to ultimately achieve full efficacy with less-frequent dosing schedules is required. Toward this aim, we optimized our recently reported spiro-oxindole inhibitors by focusing on the crucial interaction with the amino acid side chain of His96MDM2 . The designed molecules required the targeted synthesis of structurally complex spiro[indole-3,2'-pyrrolo[2,3-c]pyrrole]-2,4'-diones for which we developed an unprecedented intramolecular azomethine ylide cycloaddition and investigated the results by computational methods. One of the new compounds showed superior cellular potency over previously reported BI-0252. This finding is a significant step toward an inhibitor suitable to potentially mitigate hematological on-target adverse effects.


Assuntos
Compostos Azo/farmacologia , Indóis/farmacologia , Pirrolidinonas/farmacologia , Compostos de Espiro/farmacologia , Tiossemicarbazonas/farmacologia , Animais , Compostos Azo/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Ciclização , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinonas/síntese química , Pirrolidinonas/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade , Tiossemicarbazonas/química , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA