RESUMO
Common capillary malformations are red vascular skin lesions, most commonly associated with somatic activating GNAQ or GNA11 mutations. We focused on capillary malformations lacking such a mutation to identify previously unreported genetic causes. We used targeted next-generation sequencing on 82 lesions. Bioinformatic analysis allowed the identification of 9 somatic pathogenic variants in PIK3R1 and PIK3CA, encoding for the regulatory and catalytic subunits of phosphoinositide 3-kinase, respectively. Recharacterization of these lesions unraveled a common phenotype: a pale capillary malformation associated with visible dilated veins. Primary endothelial cells from 2 PIK3R1-mutated lesions were isolated, and PI3k-Akt-mTOR and RAS-RAF-MAPK signaling were assessed by western blot. This unveiled an abnormal increase in Akt phosphorylation, effectively reduced by PI3K pathway inhibitors, such as mTOR, Akt, and PIK3CA inhibitors. The effects of mutant PIK3R1 were further studied using zebrafish embryos. Endothelium-specific expression of PIK3R1 mutants resulted in abnormal development of the posterior capillary-venous plexus. In summary, capillary malformation associated with visible dilated veins emerges as a clinical entity associated with somatic pathogenic variants in PIK3R1 or PIK3CA (nonhotspot). Our findings suggest that the activated Akt signaling can be effectively reversed by PI3K pathway inhibitors. In addition, the proposed zebrafish model holds promise as a valuable tool for future drug screening aimed at developing patient-tailored treatments.
Assuntos
Capilares , Classe I de Fosfatidilinositol 3-Quinases , Classe Ia de Fosfatidilinositol 3-Quinase , Malformações Vasculares , Peixe-Zebra , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Peixe-Zebra/genética , Capilares/anormalidades , Capilares/patologia , Animais , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Masculino , Feminino , Malformações Vasculares/genética , Malformações Vasculares/patologia , Adulto , Mutação com Perda de Função , Pessoa de Meia-Idade , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transdução de Sinais/genética , Veias/anormalidades , Veias/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Criança , Adolescente , IdosoRESUMO
BACKGRUOUND: Recent diabetes subclassifications have improved the differentiation between patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus despite several overlapping features, yet without considering genetic forms of diabetes. We sought to facilitate the identification of monogenic diabetes by creating a new tool that we validated in a pediatric maturity-onset diabetes of the young (MODY) cohort. METHODS: We first created the DIAgnose MOnogenic DIAbetes (DIAMODIA) criteria based on the pre-existing, but incomplete, MODY calculator. This new score is composed of four strong and five weak criteria, with patients having to display at least one weak and one strong criterion. RESULTS: The effectiveness of the DIAMODIA criteria was evaluated in two patient cohorts, the first consisting of patients with confirmed MODY diabetes (n=34) and the second of patients with T1DM (n=390). These DIAMODIA criteria successfully detected 100% of MODY patients. Multiple correspondence analysis performed on the MODY and T1DM cohorts enabled us to differentiate MODY patients from T1DM. The three most relevant variables to distinguish a MODY from T1DM profile were: lower insulin-dose adjusted A1c score ≤9, glycemic target-adjusted A1c score ≤4.5, and absence of three anti-islet cell autoantibodies. CONCLUSION: We validated the DIAMODIA criteria, as it effectively identified all monogenic diabetes patients (MODY cohort) and succeeded to differentiate T1DM from MODY patients. The creation of this new and effective tool is likely to facilitate the characterization and therapeutic management of patients with atypical diabetes, and promptly referring them for genetic testing which would markedly improve clinical care and counseling, as well.
Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Criança , Masculino , Feminino , Adolescente , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/diagnóstico , Polimorfismo Genético , Pré-Escolar , Diagnóstico Diferencial , Hemoglobinas Glicadas/análise , Estudos de Coortes , InsulinaRESUMO
Capillary malformations (CMs) are the most common type of vascular anomalies, affecting around 0.3% of newborns. They are usually caused by somatic pathogenic variants in GNAQ or GNA11. PIK3CA and PIK3R1, part of the phosphoinositide 3-kinase-protein kinase B-mammalian target of rapamycin pathway, are mutated in fainter CMs such as diffuse CM with overgrowth and megalencephaly CM. In this study, we present two young patients with a CM-like phenotype associated with cerebral anomalies and severe epilepsy. Pathogenic variants in PIK3CA and PIK3R1, as well as GNAQ and GNA11, were absent in affected cutaneous tissue biopsies. Instead, we identified two somatic pathogenic variants in the AKT3 gene. Subsequent analysis of the DNA obtained from surgically resected brain tissue of one of the two patients confirmed the presence of the AKT3 variant. Focal cortical dysplasia was also detected in this patient. Genetic analysis thus facilitated workup to reach a precise diagnosis for these patients, associating the vascular anomaly with the neurological symptoms. This study underscores the importance of searching for additional signs and symptoms to guide the diagnostic workup, especially in cases with atypical vascular malformations. In addition, it strongly emphasizes the significance of genotype-phenotype correlation studies in guiding clinicians' informed decision-making regarding patient care.
Assuntos
Capilares , Epilepsia , Proteínas Proto-Oncogênicas c-akt , Telangiectasia , Malformações Vasculares , Feminino , Humanos , Recém-Nascido , Masculino , Capilares/anormalidades , Capilares/patologia , Epilepsia/genética , Epilepsia/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Mosaicismo , Mutação/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/genética , Telangiectasia/genética , Telangiectasia/patologia , Telangiectasia/diagnóstico , Malformações Vasculares/genética , Malformações Vasculares/patologia , Malformações Vasculares/diagnóstico , Malformações Vasculares/complicações , AdolescenteRESUMO
Over the past years, progress made in next-generation sequencing technologies and bioinformatics have sparked a surge in association studies. Especially, genome-wide association studies (GWASs) have demonstrated their effectiveness in identifying disease associations with common genetic variants. Yet, rare variants can contribute to additional disease risk or trait heterogeneity. Because GWASs are underpowered for detecting association with such variants, numerous statistical methods have been recently proposed. Aggregation tests collapse multiple rare variants within a genetic region (e.g. gene, gene set, genomic loci) to test for association. An increasing number of studies using such methods successfully identified trait-associated rare variants and led to a better understanding of the underlying disease mechanism. In this review, we compare existing aggregation tests, their statistical features and scope of application, splitting them into the five classical classes: burden, adaptive burden, variance-component, omnibus and other. Finally, we describe some limitations of current aggregation tests, highlighting potential direction for further investigations.
Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Estudos de Casos e Controles , Modelos GenéticosRESUMO
This study describes genomic findings among individuals with both orofacial clefts (OC) and microphthalmia/anophthalmia/coloboma (MAC) recorded in the Brazilian Database on Craniofacial Anomalies (BDCA). Chromosomal microarray analysis (CMA) and Whole Exome Sequencing (WES) were performed in 17 individuals with OC-MAC. Clinical interpretation of molecular findings was based on data available at the BDCA and on re-examination. No copy number variants (CNVs) classified as likely pathogenic or pathogenic were detected by CMA. WES allowed a conclusive diagnosis in six individuals (35.29%), two of them with variants in the CHD7 gene, and the others with variants in the TFAP2A, POMT1, PTPN11, and TP63 genes with the following syndromes: CHARGE, CHD7-spectrum, Branchiooculofacial, POMT1-spectrum, LEOPARD, and ADULT. Variants of uncertain significance (VUS) possibly associated to the phenotypes were found in six other individuals. Among the individuals with VUSes, three individuals presented variants in genes associated to defects of cilia structure and/or function, including DYNC2H1, KIAA0586, WDR34, INTU, RPGRIP1L, KIF7, and LMNA. These results show that WES was the most effective molecular approach for OC-MAC in this cohort. This study also reinforces the genetic heterogeneity of OC-MAC, and the importance of genes related to ciliopathies in this phenotype.
RESUMO
BACKGROUND: Only 15-20% of recurrent and/or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN) patients derive long-term benefit from nivolumab or pembrolizumab. We developed a circulating tumour DNA (ctDNA) tumour-agnostic assay aimed at the early prediction of single agent programmed cell death 1 (PD1) inhibitor efficacy in R/M SCCHN. PATIENTS AND METHODS: Our tumour-agnostic assay included 37 genes frequently mutated in R/M SCCHN and two HPV16 genes. Primary endpoint was the concordance between ctDNA kinetics (ΔctDNA) and the best overall response according to Response Evaluation Criteria in Solid Tumors version 1.1. ΔctDNA was defined as the difference in mean variant allele frequency (VAF) between the on-treatment sample harvested 6-10 weeks (FU1) after PD1 inhibitor initiation and the pre-treatment plasma sample (ΔctDNA = mean FU1 VAF - mean pre-treatment VAF). RESULTS: ctDNA was detected in 35/44 (80%) of the pre-treatment plasma samples. The concordance between ΔctDNA and imaging response was observed in 74%. Median progression-free survival was 8.6 months in the favourable ΔctDNA group and 2.5 months in the unfavourable ΔctDNA group (p = 0.057). Median overall survival (OS) was 18.1 and 8.2 months in the favourable and unfavourable ΔctDNA groups, respectively (p = 0.13). In patients with PD-L1 expressing SCCHN (Combined Positive Score ≥1), OS was significantly better in patients with favourable ΔctDNA compared with patients with unfavourable ΔctDNA: median OS was 41.5 and 8.4 months (p = 0.033), respectively. CONCLUSIONS: Tumour-agnostic ctDNA analysis for human papillomavirus (HPV)-negative and HPV-positive R/M SCCHN is feasible. ctDNA kinetics show promising results in predicting the efficacy of PD1 inhibitors in R/M SCCHN.
Assuntos
Carcinoma de Células Escamosas , DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , DNA Tumoral Circulante/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/secundárioRESUMO
The development of high-throughput next-generation sequencing technologies and large-scale genetic association studies produced numerous advances in the biostatistics field. Various aggregation tests, i.e. statistical methods that analyze associations of a trait with multiple markers within a genomic region, have produced a variety of novel discoveries. Notwithstanding their usefulness, there is no single test that fits all needs, each suffering from specific drawbacks. Selecting the right aggregation test, while considering an unknown underlying genetic model of the disease, remains an important challenge. Here we propose a new ensemble method, called Excalibur, based on an optimal combination of 36 aggregation tests created after an in-depth study of the limitations of each test and their impact on the quality of result. Our findings demonstrate the ability of our method to control type I error and illustrate that it offers the best average power across all scenarios. The proposed method allows for novel advances in Whole Exome/Genome sequencing association studies, able to handle a wide range of association models, providing researchers with an optimal aggregation analysis for the genetic regions of interest.
Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Simulação por Computador , Estudos de Associação Genética , Genômica , Modelos Genéticos , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
BACKGROUND: Primary lymphoedema (PL) is a chronic, debilitating disease caused by developmental and functional defects of the lymphatic system. It is marked by an accumulation of interstitial fluid, fat and tissue fibrosis. There is no cure. More than 50 genes and genetic loci have been linked to PL. We sought to study systematically cell polarity signalling protein Cadherin Epidermal Growth Factor Laminin G Seven-pass G-type Receptor 1 (CELSR1) variants linked to PL. METHODS: We investigated 742 index patients from our PL cohort using exome sequencing. RESULTS: We identified nine variants predicted to cause CELSR1 loss of function. Four of them were tested for nonsense-mediated mRNA decay, but none was observed. Most of the truncated CELSR1 proteins would lack the transmembrane domain, if produced. The affected individuals had puberty/late-onset PL on lower extremities. The variants had a statistically significant difference in penetrance between female patients (87%) and male patients (20%). Eight variant carriers had a kidney anomaly, mostly in the form of ureteropelvic junction obstruction, which has not been associated with CELSR1 before. CELSR1 is located in the 22q13.3 deletion locus of the Phelan-McDermid syndrome. As variable renal defects are often seen in patients with the Phelan-McDermid syndrome, CELSR1 may be the long-sought gene for the renal defects. CONCLUSION: PL associated with a renal anomaly suggests a CELSR1-related cause.
Assuntos
Transtornos Cromossômicos , Linfedema , Feminino , Humanos , Masculino , Caderinas/genética , Caderinas/metabolismo , Deleção Cromossômica , Transtornos Cromossômicos/genética , Linfedema/genéticaRESUMO
SATB2-associated syndrome (SAS) is a rare condition, and it is characterized by severe developmental delay/intellectual disability, especially severe speech delay/or absence, craniofacial abnormalities, and behavioral problems. Most of the published reports are limited to children, with little information about the natural history of the disease and the possible novel signs and symptoms or behavioral changes in adulthood. We describe the management and follow-up of a 25-year-old male with SAS due to a de novo heterozygous nonsense variant SATB2:c.715C>T:p.(Arg239*) identified by whole-exome sequencing and review the literature. The case herein described contributes to a better characterization of the natural history of this genetic condition and in addition to the genotype-phenotype correlation of the SATB2:c.715C>T:p.(Arg239*) variant in SAS, highlights some particularities of its management.
Assuntos
Deficiência Intelectual , Proteínas de Ligação à Região de Interação com a Matriz , Masculino , Humanos , Fenótipo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Síndrome , Estudos de Associação Genética , Deficiência Intelectual/genética , Fatores de Transcrição/genéticaRESUMO
Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNA sequencing and protein expression by liquid chromatography-mass spectrometry directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.
Assuntos
Células Endoteliais , Perfilação da Expressão Gênica , Humanos , Células Endoteliais/metabolismo , Endotélio , Células Cultivadas , Técnicas de CoculturaRESUMO
Central conducting lymphatic anomaly (CCLA), characterized by the dysfunction of core collecting lymphatic vessels including the thoracic duct and cisterna chyli, and presenting as chylothorax, pleural effusions, chylous ascites, and lymphedema, is a severe disorder often resulting in fetal or perinatal demise. Although pathogenic variants in RAS/mitogen activated protein kinase (MAPK) signaling pathway components have been documented in some patients with CCLA, the genetic etiology of the disorder remains uncharacterized in most cases. Here, we identified biallelic pathogenic variants in MDFIC, encoding the MyoD family inhibitor domain containing protein, in seven individuals with CCLA from six independent families. Clinical manifestations of affected fetuses and children included nonimmune hydrops fetalis (NIHF), pleural and pericardial effusions, and lymphedema. Generation of a mouse model of human MDFIC truncation variants revealed that homozygous mutant mice died perinatally exhibiting chylothorax. The lymphatic vasculature of homozygous Mdfic mutant mice was profoundly mispatterned and exhibited major defects in lymphatic vessel valve development. Mechanistically, we determined that MDFIC controls collective cell migration, an important early event during the formation of lymphatic vessel valves, by regulating integrin ß1 activation and the interaction between lymphatic endothelial cells and their surrounding extracellular matrix. Our work identifies MDFIC variants underlying human lymphatic disease and reveals a crucial, previously unrecognized role for MDFIC in the lymphatic vasculature. Ultimately, understanding the genetic and mechanistic basis of CCLA will facilitate the development and implementation of new therapeutic approaches to effectively treat this complex disease.
Assuntos
Quilotórax , Vasos Linfáticos , Linfedema , Fatores de Regulação Miogênica , Animais , Quilotórax/genética , Quilotórax/metabolismo , Células Endoteliais , Feminino , Humanos , Hidropisia Fetal/genética , Hidropisia Fetal/metabolismo , Vasos Linfáticos/patologia , Linfedema/genética , Linfedema/metabolismo , Camundongos , Fatores de Regulação Miogênica/genética , GravidezRESUMO
BACKGROUND: Theragnostic management, treatment according to precise pathological molecular targets, requests to unravel patients' genotypes. We used targeted next-generation sequencing (NGS) or digital droplet polymerase chain reaction (ddPCR) to screen for somatic PIK3CA mutations on DNA extracted from resected lesional tissue or lymphatic endothelial cells (LECs) isolated from lesions. Our cohort (n = 143) was composed of unrelated patients suffering from a common lymphatic malformation (LM), a combined lymphatic malformation [lymphatico-venous malformation (LVM), capillaro-lymphatic malformation (CLM), capillaro-lymphatico-venous malformation (CLVM)], or a syndrome [CLVM with hypertrophy (Klippel-Trenaunay-Weber syndrome, KTS), congenital lipomatous overgrowth-vascular malformations-epidermal nevi -syndrome (CLOVES), unclassified PIK3CA-related overgrowth syndrome (PROS) or unclassified vascular (lymphatic) anomaly syndrome (UVA)]. RESULTS: We identified a somatic PIK3CA mutation in resected lesions of 108 out of 143 patients (75.5%). The frequency of the variant allele ranged from 0.54 to 25.33% in tissues, and up to 47% in isolated endothelial cells. We detected a statistically significant difference in the distribution of mutations between patients with common and combined LM compared to the syndromes, but not with KTS. Moreover, the variant allele frequency was higher in the syndromes. CONCLUSIONS: Most patients with an common or combined lymphatic malformation with or without overgrowth harbour a somatic PIK3CA mutation. However, in about a quarter of patients, no such mutation was detected, suggesting the existence of (an)other cause(s). We detected a hotspot mutation more frequently in common and combined LMs compared to syndromic cases (CLOVES and PROS). Diagnostic genotyping should thus not be limited to PIK3CA hotspot mutations. Moreover, the higher mutant allele frequency in syndromes suggests a wider distribution in patients' tissues, facilitating detection. Clinical trials have demonstrated efficacy of Sirolimus and Alpelisib in treating patients with an LM or PROS. Genotyping might lead to an increase in efficacy, as treatments could be more targeted, and responses could vary depending on presence and type of PIK3CA-mutation.
Assuntos
Síndrome de Klippel-Trenaunay-Weber , Lipoma , Anormalidades Linfáticas , Malformações Vasculares , Classe I de Fosfatidilinositol 3-Quinases/genética , Células Endoteliais , Humanos , MutaçãoRESUMO
Gorham-Stout disease (GSD) is a sporadically occurring lymphatic disorder. Patients with GSD develop ectopic lymphatics in bone, gradually lose bone, and can have life-threatening complications, such as chylothorax. The etiology of GSD is poorly understood, and current treatments for this disease are inadequate for most patients. To explore the pathogenesis of GSD, we performed targeted high-throughput sequencing with samples from a patient with GSD and identified an activating somatic mutation in KRAS (p.G12V). To characterize the effect of hyperactive KRAS signaling on lymphatic development, we expressed an active form of KRAS (p.G12D) in murine lymphatics (iLECKras mice). We found that iLECKras mice developed lymphatics in bone, which is a hallmark of GSD. We also found that lymphatic valve development and maintenance was altered in iLECKras mice. Because most iLECKras mice developed chylothorax and died before they had significant bone disease, we analyzed the effect of trametinib (an FDA-approved MEK1/2 inhibitor) on lymphatic valve regression in iLECKras mice. Notably, we found that trametinib suppressed this phenotype in iLECKras mice. Together, our results demonstrate that somatic activating mutations in KRAS can be associated with GSD and reveal that hyperactive KRAS signaling stimulates the formation of lymphatics in bone and impairs the development of lymphatic valves. These findings provide insight into the pathogenesis of GSD and suggest that trametinib could be an effective treatment for GSD.
Assuntos
Osso e Ossos/patologia , Vasos Linfáticos , Osteólise Essencial , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia , Acrilonitrila/análogos & derivados , Acrilonitrila/farmacologia , Compostos de Anilina/farmacologia , Animais , Modelos Animais de Doenças , Mutação com Ganho de Função , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Linfangiogênese/genética , Vasos Linfáticos/anormalidades , Vasos Linfáticos/patologia , Camundongos , Osteólise Essencial/genética , Osteólise Essencial/patologia , Transdução de Sinais , Estruturas Linfoides Terciárias/genética , Estruturas Linfoides Terciárias/patologiaRESUMO
Cleft lip and/or palate are a split in the lip, the palate or both. This results from the inability of lip buds and palatal shelves to properly migrate and assemble during embryogenesis. By extracting primary cells from a cleft patient, we aimed at offering a better understanding of the signaling mechanisms and interacting molecules involved in the lip and palate formation and fusion. With Rho GTPases being indirectly associated with cleft occurrence, we investigated the role of the latter in both. First, whole exome sequencing was conducted in a patient with cleft lip and palate. Primary fibroblastic cells originating from the upper right gingiva region were extracted and distinct cellular populations from two individuals were obtained: a control with no cleft phenotype and a patient with a cleft lip and palate. The genetic data showed three candidate variables in ARHGEF18, EPDR1, and CUL7. Next, the molecular data showed no significant change in proliferation rates between healthy patient cells and CL/P patient cells. However, CL/P patient cells showed decreased migration, increased adhesion and presented with a more elongated phenotype. Additionally, RhoA activity was upregulated in these cells, whereas Cdc42 activity was downregulated, resulting in loss of polarity. Our results are suggestive of a possible correlation between a dysregulation of Rho GTPases and the observed phenotype of cleft lip and palate patient cells. This insight into the intramolecular aspect of this disorder helps link the genetic defect with the observed phenotype and offers a possible mechanism by which CL/P occurs.
Assuntos
Movimento Celular , Fenda Labial/enzimologia , Fenda Labial/patologia , Fissura Palatina/enzimologia , Fissura Palatina/patologia , Proteínas rho de Ligação ao GTP/metabolismo , Adolescente , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fenda Labial/genética , Fissura Palatina/genética , Colágeno/farmacologia , Feminino , Humanos , Fenótipo , Sequenciamento do Exoma , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
OBJECTIVES: The SARS-CoV-2 pandemic has created an unprecedented need for rapid large-scale diagnostic testing to prompt clinical and public health interventions. Currently, several quantitative reverse-transcription polymerase chain reaction (RT-qPCR) assays recommended by the World Health Organization are being used by clinical and public health laboratories and typically target regions of the RNA-dependent RNA polymerase (RdRp), envelope (E) and nucleocapsid (N) coding region. However, it is currently unclear if results from different tests are comparable. This study aimed to clarify the clinical performances of the primer/probe sets designed by US CDC and Charité/Berlin to help clinical laboratories in assay selection for SARS-CoV-2 routine detection. METHODS: We compared the clinical performances of the recommended primer/probe sets using one hundred nasopharyngeal swab specimens from patients who were clinically diagnosed with COVID-19. An additional 30 "pre-intervention screening" samples from patients who were not suspected of COVID-19 were also included in this study. We also performed sequence alignment between 31064 European SARS-CoV-2 and variants of concern genomes and the recommended primer/probe sets. RESULTS: The present study demonstrates substantial differences in SARS-CoV-2 RNA detection sensitivity among the primer/probe sets recommended by the World Health Organization especially for low-level viral loads. The alignment of thousands of SARS-CoV-2 sequences reveals that the genetic diversity remains relatively low at the primer/probe binding sites. However, multiple nucleotide mismatches might contribute to false negatives. CONCLUSION: An understanding of the limitations depending on the targeted genes and primer/probe sets may influence the selection of molecular detection assays by clinical laboratories.
Assuntos
Primers do DNA/genética , Genoma Viral/genética , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Coronavirus/genética , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade , Alinhamento de Sequência , Carga Viral , Proteínas Virais/genéticaRESUMO
BACKGROUND: Biodiversity screens and phylogenetic studies are dependent on reliable DNA sequences in public databases. Biological collections possess vouchered specimens with a traceable history. Therefore, DNA sequencing of samples available at institutional collections can greatly contribute to taxonomy, and studies on evolution and biodiversity. METHODS: We sequenced part of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and the SSU rRNA (V7/V8) genes from 102 trypanosomatid cultures, which are available on request at www.colprot.fiocruz.br. OBJECTIVE: The main objective of this work was to use phylogenetic inferences, using the obtained DNA sequences and those from representatives of all Trypanosomatidae genera, to generate phylogenetic trees that can simplify new isolates screenings. FINDINGS: A DNA sequence is provided for the first time for several isolates, the phylogenetic analysis allowed the classification or reclassification of several specimens, identification of candidates for new genera and species, as well as the taxonomic validation of several deposits. MAIN CONCLUSIONS: This survey aimed at presenting a list of validated species and their associated DNA sequences combined with a short historical overview of each isolate, which can support taxonomic and biodiversity research and promote culture collections.
Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Trypanosomatina/classificação , Trypanosomatina/genética , FilogeniaRESUMO
BACKGROUND: Multigene panels are routinely used to assess for predisposing germline mutations in families at high breast cancer risk. The number of variants of unknown significance thereby identified increases with the number of sequenced genes. We aimed to determine whether tumor sequencing can help refine the analysis of germline variants based on second somatic genetic events in the same gene. METHODS: Whole-exome sequencing (WES) was performed on whole blood DNA from 70 unrelated breast cancer patients referred for genetic testing and without a BRCA1, BRCA2, TP53, or CHEK2 mutation. Rare variants were retained in a list of 735 genes. WES was performed on matched tumor DNA to identify somatic second hits (copy number alterations (CNAs) or mutations) in the same genes. Distinct methods (among which immunohistochemistry, mutational signatures, homologous recombination deficiency, and tumor mutation burden analyses) were used to further study the role of the variants in tumor development, as appropriate. RESULTS: Sixty-eight patients (97%) carried at least one germline variant (4.7 ± 2.0 variants per patient). Of the 329 variants, 55 (17%) presented a second hit in paired tumor tissue. Of these, 53 were CNAs, resulting in tumor enrichment (28 variants) or depletion (25 variants) of the germline variant. Eleven patients received variant disclosure, with clinical measures for five of them. Seven variants in breast cancer-predisposing genes were considered not implicated in oncogenesis. One patient presented significant tumor enrichment of a germline variant in the oncogene ERBB2, in vitro expression of which caused downstream signaling pathway activation. CONCLUSION: Tumor sequencing is a powerful approach to refine variant interpretation in cancer-predisposing genes in high-risk breast cancer patients. In this series, the strategy provided clinically relevant information for 11 out of 70 patients (16%), adapted to the considered gene and the familial clinical phenotype.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Sequenciamento do Exoma/métodos , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Adulto , Idoso , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Fatores de RiscoRESUMO
OBJECTIVES: The molecular landscape of head and neck squamous cell carcinoma (HNSCC) harbors potentially actionable genomic alterations. We aimed to study the utility of liquid biopsy to (i) characterize the mutational landscape of recurrent/metastatic HNSCC using a comprehensive gene panel and (ii) estimate the concordance between DNA mutations identified from circulating tumor DNA (ctDNA) and matched tumor tissues. MATERIALS AND METHODS: Targeted next-generation sequencing (NGS) was performed on cell-free DNA (cfDNA) of 39 patients with locoregional recurrent (n = 19) and/or metastatic (n = 20) HNSCC. Tumor biopsy (n = 18) was sequenced using the same technique. RESULTS: ctDNA was detected in 51% of patients (20/39) with a higher probability of detection in metastatic than locoregional recurrent disease (70% versus 30%, p = 0.025). 81% and 58% of the tissue tumor variants were not detected in plasma when considering all patients and only metastatic patients with detectable ctDNA, respectively. In a multivariate analysis, the likelihood of detecting the tissue tumor variant in plasma was related to metastatic status (p = 0.012), tumor variant allele frequency (p < 0.001) and ctDNA quantity (p < 0.001). 26% of the variants were detected only in liquid and not in the solid biopsy. Three patients without an available tumor sample had plasma containing three different potentially actionable PIK3CA mutations. CONCLUSION: CtDNA detection and characterization using targeted NGS is feasible in metastatic HNSCC. Liquid biopsies do not reflect the complete mutation profile of the tumor but have the potential to identify actionable mutations when tumor biopsies are not available as well as variants not found in matched tumor tissue.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biópsia Líquida/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Feminino , Humanos , Masculino , Metástase Neoplásica , Recidiva Local de NeoplasiaRESUMO
Here, we present first draft genome sequence of the trypanosomatid Herpetomonas muscarum ingenoplastis. This parasite was isolated repeatedly in the black blowfly, Phormia regina, and it forms a phylogenetically distinct clade in the Trypanosomatidae family.
RESUMO
BACKGROUND: Capillary malformation-arteriovenous malformation is an autosomal dominant disorder, characterised by capillary malformations and increased risk of fast-flow vascular malformations, caused by loss-of-function mutations in the RASA1 or EPHB4 genes. Around 25% of the patients do not seem to carry a germline mutation in either one of these two genes. Even if other genes could be involved, some individuals may have mutations in the known genes that escaped detection by less sensitive techniques. We tested the hypothesis that mosaic mutations could explain some of previously negative cases. METHODS: DNA was extracted from peripheral blood lymphocytes, saliva or vascular malformation tissues from four patients. RASA1 and EPHB4 coding regions and exon/intron boundaries were analysed by targeted custom gene panel sequencing. A second panel and/or Sanger sequencing were used to confirm the identified mutations. RESULTS: Four distinct mosaic RASA1 mutations, with an allele frequency ranging from 3% to 25%, were identified in four index patients with classical capillary malformation-arteriovenous malformation phenotype. Three mutations were known, one was novel. In one patient, a somatic second hit was also identified. One index case had three affected children, illustrating that the mosaicism was also present in the germline. CONCLUSION: This study shows that RASA1 mosaic mutations can cause capillary malformation-arteriovenous malformation. Thus, highly sensitive sequencing techniques should be considered as diagnostic tools, especially for patients with no family history. Even low-level mosaicism can cause the classical phenotype and increased risk for offspring. In addition, our study further supports the second-hit pathophysiological mechanism to explain the multifocality of vascular lesions in this disorder.