Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Biosaf ; 24(2): 90-95, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36033936

RESUMO

Introduction: Keeping a contamination free environment in the laboratory has commonly been achieved by one of two ways: a flame or a biosafety cabinet (BSC). However, it has been frequently observed that these two practices have been combined, where a heat source has been used within the BSC. As flames require flammable gasses and cause hot air to rise, it was hypothesized that these could lead to a loss of BSC containment, as BSCs rely on unidirectional downflow air. Objectives: The objective of this study was to determine whether BSCs can maintain containment when a heat source is operated within the work area. Methods: Several heat sources (Bunsen burner, High Heat Bunsen Burner, Spirit Lamp and Bacti-cinerator) were placed within two sizes of BSCs (4-foot and 6-foot), and smoke was used to visualize airflow disturbances, air cleanliness was measured by particle counting , and aerosol microbiological testing was conducted to ascertain containment. The risk of introducing a flammable gas into a BSC was also calculated. Results: Large flamed Bunsen burners were found to have the most detrimental effects on the ability of the BSC to maintain containment, especially in the center of the work area, while the smaller heat sources were more variable. Containment was completely lost in the 4-foot BSC, whereas the 6-foot BSC was capable of maintaining containment in only a few conditions. The BSC was also calculated to be able to maintain the required volume of flammable gas needed to operate the burners, not taking into consideration unintended leaks. Conclusions: Overall, it was determined that BSCs cannot operate safely and reliably while housing a heat source, as it could cause unexpected contamination of the work or the worker, or BSC ignition or explosion.

2.
Arterioscler Thromb Vasc Biol ; 36(2): 370-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715683

RESUMO

OBJECTIVE: Palmitoylation, the reversible addition of the lipid palmitate to a cysteine, can alter protein localization, stability, and function. The ZDHHC family of protein acyl transferases catalyzes palmitoylation of numerous proteins. The role of ZDHHC enzymes in intact tissue and in vivo is largely unknown. Herein, we characterize vascular functions in a mouse that expresses a nonfunctional ZDHHC21 (F233Δ). APPROACH AND RESULTS: Physiological studies of isolated aortae and mesenteric arteries from F233Δ mice revealed an unexpected defect in responsiveness to phenylephrine, an α1 adrenergic receptor agonist. In vivo, F233Δ mice displayed a blunted response to infusion of phenylephrine, and they were found to have elevated catecholamine levels and elevated vascular α1 adrenergic receptor gene expression. Telemetry studies showed that the F233Δ mice were tachycardic and hypotensive at baseline, consistent with diminished vascular tone. In biochemical studies, ZDHHC21 was shown to palmitoylate the α1D adrenoceptor and to interact with it in a molecular complex, thus suggesting a possible molecular mechanism by which the receptor can be regulated by ZDHHC21. CONCLUSIONS: Together, the data support a model in which ZDHHC21 F233Δ diminishes the function of vascular α1 adrenergic receptors, leading to reduced vascular tone, which manifests in vivo as hypotension and tachycardia. This is to our knowledge the first demonstration of a ZDHHC isoform affecting vascular function in vivo and identifies a novel molecular mode of regulation of vascular tone and blood pressure.


Assuntos
Aciltransferases/metabolismo , Aorta/enzimologia , Hemodinâmica , Artérias Mesentéricas/enzimologia , Receptores Adrenérgicos alfa 1/metabolismo , Aciltransferases/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Pressão Sanguínea , Relação Dose-Resposta a Droga , Epinefrina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Genótipo , Células HEK293 , Frequência Cardíaca , Hemodinâmica/efeitos dos fármacos , Humanos , Hipotensão/enzimologia , Hipotensão/genética , Hipotensão/fisiopatologia , Lipoilação , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Norepinefrina/metabolismo , Fenótipo , Fenilefrina/farmacologia , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/genética , Transdução de Sinais , Taquicardia/enzimologia , Taquicardia/genética , Taquicardia/fisiopatologia , Fatores de Tempo , Transfecção , Vasoconstrição
3.
Methods Mol Biol ; 1020: 131-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23709030

RESUMO

Real-time and noninvasive imaging of intracellular second messengers in mammalian cells, while -preserving their in vivo phenotype, requires biosensors of exquisite constitution. Here we provide the methodology for utilizing the single wavelength cGMP-biosensor δ-FlincG in aortic vascular smooth muscle cells.


Assuntos
GMP Cíclico/metabolismo , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Adenoviridae/genética , Animais , Separação Celular/métodos , GMP Cíclico/química , Vetores Genéticos/genética , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Miócitos de Músculo Liso/citologia , Ratos , Transdução Genética
4.
Gut ; 62(1): 138-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22267600

RESUMO

BACKGROUND AND AIM: The lymphatic network plays a major role in maintaining tissue fluid homoeostasis. Therefore several pathological conditions associated with oedema formation result in deficient lymphatic function. However, the role of the lymphatic system in the pathogenesis of ascites and oedema formation in cirrhosis has not been fully clarified. The aim of this study was to investigate whether the inability of the lymphatic system to drain tissue exudate contributes to the oedema observed in cirrhosis. METHODS: Cirrhosis was induced in rats by CCl(4) inhalation. Lymphatic drainage was evaluated using fluorescent lymphangiography. Expression of endothelial nitric oxide synthase (eNOS) was measured in primary lymphatic endothelial cells (LyECs). Inhibition of eNOS activity in cirrhotic rats with ascites (CH) was carried out by L-N(G)-methyl-L-arginine (L-NMMA) treatment (0.5 mg/kg/day). RESULTS: The (CH) rats had impaired lymphatic drainage in the splanchnic and peripheral regions compared with the control (CT) rats. LyECs isolated from the CH rats showed a significant increase in eNOS and nitric oxide (NO) production. In addition, the lymphatic vessels of the CH rats showed a significant reduction in smooth muscle cell (SMC) coverage compared with the CT rats. CH rats treated with L-NMMA for 7 days showed a significant improvement in lymphatic drainage and a significant reduction in ascites volume, which were associated with increased plasma volume. This beneficial effect of L-NMMA inhibition was also associated with a significant increase in lymphatic SMC coverage. CONCLUSIONS: The upregulation of eNOS in the LyECs of CH rats causes long-term lymphatic remodelling, which is characterised by a loss of SMC lymphatic coverage. The amelioration of this lymphatic abnormality by chronic eNOS inhibition results in improved lymphatic drainage and reduced ascites.


Assuntos
Células Endoteliais/metabolismo , Cirrose Hepática/fisiopatologia , Sistema Linfático/fisiopatologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais , Ascite/etiologia , Biomarcadores/metabolismo , Tetracloreto de Carbono , Endotélio Linfático/metabolismo , Endotélio Linfático/patologia , Endotélio Linfático/fisiopatologia , Cirrose Hepática/induzido quimicamente , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Linfografia , Masculino , Miócitos de Músculo Liso/patologia , Óxido Nítrico Sintase/antagonistas & inibidores , Distribuição Aleatória , Ratos , Ratos Wistar , ômega-N-Metilarginina/metabolismo
5.
Front Pharmacol ; 3: 130, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22807915

RESUMO

Nitric oxide (NO) is a potent dilator of vascular smooth muscle (VSM) by modulating intracellular cGMP ([cGMP](i)) through the binding and activation of receptor guanylyl cylases (sGC). The kinetic relationship of NO and sGC, as well as the subsequent regulation of [cGMP](i) and its effects on blood vessel vasodilation, is largely unknown. In isolated VSM cells exposed to both pulsed and clamped NO we observed transient and sustained increases in [cGMP](i), with sub-nanomolar sensitivity to NO (EC(50) = 0.28 nM). Through the use of pharmacological inhibitors of sGC, PDE5, and PKG, a comprehensive VSM-specific modeling algorithm was constructed to elucidate the concerted activity profiles of sGC, PDE5, phosphorylated PDE5, and PDE1 in the maintenance of [cGMP](i). In small pressure-constricted arteries of the resistance vasculature we again observed both transient and sustained relaxations upon delivery of pulsed and clamped NO, while maintaining a similarly high sensitivity to NO (EC(50) = 0.42 nM). Our results propose an intricate dependency of the messengers and enzymes involved in cGMP homeostasis, and vasodilation in VSM. Particularly, the high sensitivity of sGC to NO in primary tissue indicates how small changes in the concentrations of NO, irrespective of the form of NO delivery, can have significant effects on the dynamic regulation of vascular tone.

6.
Proc Natl Acad Sci U S A ; 107(51): 22060-5, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21135206

RESUMO

Nitric oxide (NO) functions as a diffusible transmitter in most tissues of the body and exerts its effects by binding to receptors harboring a guanylyl cyclase transduction domain, resulting in cGMP accumulation in target cells. Despite its widespread importance, very little is known about how this signaling pathway operates at physiological NO concentrations and in real time. To address these deficiencies, we have exploited the properties of a novel cGMP biosensor, named δ-FlincG, expressed in cells containing varying mixtures of NO-activated guanylyl cyclase and cGMP-hydrolyzing phosphodiesterase activity. Responsiveness to NO, signifying a physiologically relevant rise in cGMP to 30 nM or more, was seen at concentrations as low as 1 pM, making cells by far the most sensitive NO detectors yet encountered. Even cells coexpressing phosphodiesterase-5, a cGMP-activated isoform found in many NO target cells, responded to NO in concentrations as low as 10 pM. The dynamics of NO capture and signal transduction was revealed by administering timed puffs of NO from a local pipette. A puff lasting only 100 ms, giving a calculated peak intracellular NO concentration of 23 pM, was detectable. The results could be encapsulated in a quantitative model of cellular NO-cGMP signaling, which recapitulates the NO responsiveness reported previously from crude cGMP measurements on native cells, and which explains how NO is able to exert physiological effects at extremely low concentrations, when only a tiny proportion of its receptors would be occupied.


Assuntos
GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Receptores Acoplados a Guanilato Ciclase/metabolismo , Transdução de Sinais/fisiologia , Animais , Técnicas Biossensoriais/métodos , Bovinos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Óxido Nítrico/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA