Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 55(72): 10752-10755, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31432818

RESUMO

Here, we demonstrate a chemical modification strategy to create biomaterials of the M13 bacteriophage with extraordinary thermal stability, and high compatibility with non-aqueous ionic liquids. The results provide a blueprint for developing soft materials with well-defined architectures that may find broad applicability in the next generation of flexible devices.


Assuntos
Bacteriófago M13/química , Líquidos Iônicos/química , Temperatura , Tamanho da Partícula
2.
Nat Mater ; 15(2): 211-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26461447

RESUMO

One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.


Assuntos
Transferência de Energia , Engenharia Genética , Simulação por Computador , Eletroquímica , Teste de Materiais , Modelos Teóricos , Análise Espectral , Temperatura
3.
J Am Chem Soc ; 136(47): 16508-14, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25343220

RESUMO

Biocatalysis has grown rapidly in recent decades as a solution to the evolving demands of industrial chemical processes. Mounting environmental pressures and shifting supply chains underscore the need for novel chemical activities, while rapid biotechnological progress has greatly increased the utility of enzymatic methods. Enzymes, though capable of high catalytic efficiency and remarkable reaction selectivity, still suffer from relative instability, high costs of scaling, and functional inflexibility. Herein, we developed a biochemical platform for engineering de novo semisynthetic enzymes, functionally modular and widely stable, based on the M13 bacteriophage. The hydrolytic bacteriophage described in this paper catalyzes a range of carboxylic esters, is active from 25 to 80 °C, and demonstrates greater efficiency in DMSO than in water. The platform complements biocatalysts with characteristics of heterogeneous catalysis, yielding high-surface area, thermostable biochemical structures readily adaptable to reactions in myriad solvents. As the viral structure ensures semisynthetic enzymes remain linked to the genetic sequences responsible for catalysis, future work will tailor the biocatalysts to high-demand synthetic processes by evolving new activities, utilizing high-throughput screening technology and harnessing M13's multifunctionality.


Assuntos
Bacteriófagos/enzimologia , Proteínas do Capsídeo/metabolismo , Bacteriófagos/química , Bacteriófagos/metabolismo , Proteínas do Capsídeo/química , Ativação Enzimática , Modelos Moleculares , Estrutura Molecular , Engenharia de Proteínas
4.
Protein Sci ; 19(10): 1863-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20669236

RESUMO

Ero1p is the primary catalyst of disulfide bond formation in the yeast endoplasmic reticulum (ER). Ero1p contains a pair of essential disulfide bonds that participate directly in the electron transfer pathway from substrate thiol groups to oxygen. Remarkably, elimination of certain other Ero1p disulfides by mutation enhances enzyme activity. In particular, the C150A/C295A Ero1p mutant exhibits increased thiol oxidation in vitro and in vivo and interferes with redox homeostasis in yeast cells by hyperoxidizing the ER. Inhibitory disulfides of Ero1p are thus important for enzyme regulation. To visualize the differences between de-regulated and wild-type Ero1p, we determined the crystal structure of Ero1p C150A/C295A. The structure revealed local changes compared to the wild-type enzyme around the sites of mutation, but no conformational transitions within 25 A of the active site were observed. To determine how the C150--C295 disulfide nonetheless participates in redox regulation of Ero1p, we analyzed using mass spectrometry the changes in Ero1p disulfide connectivity as a function of time after encounter with reducing substrates. We found that the C150--C295 disulfide sets a physiologically appropriate threshold for enzyme activation by guarding a key neighboring disulfide from reduction. This study illustrates the diverse and interconnected roles that disulfides can play in redox regulation of protein activity.


Assuntos
Dissulfetos/química , Glicoproteínas/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Dissulfetos/metabolismo , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Glicoproteínas/genética , Glicoproteínas/metabolismo , Cinética , Espectrometria de Massas , Modelos Moleculares , Mutação , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Biol Chem ; 285(27): 20993-1003, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20442408

RESUMO

Endoplasmic reticulum oxidation 1 (ERO1) is a conserved eukaryotic flavin adenine nucleotide-containing enzyme that promotes disulfide bond formation by accepting electrons from reduced protein disulfide isomerase (PDI) and passing them on to molecular oxygen. Although disulfide bond formation is an essential process, recent experiments suggest a surprisingly broad tolerance to genetic manipulations that attenuate the rate of disulfide bond formation and that a hyperoxidizing ER may place stressed cells at a disadvantage. In this study, we report on the development of a high throughput in vitro assay for mammalian ERO1alpha activity and its application to identify small molecule inhibitors. The inhibitor EN460 (IC(50), 1.9 mum) interacts selectively with the reduced, active form of ERO1alpha and prevents its reoxidation. Despite rapid and promiscuous reactivity with thiolates, EN460 exhibits selectivity for ERO1. This selectivity is explained by the rapid reversibility of the reaction of EN460 with unstructured thiols, in contrast to the formation of a stable bond with ERO1alpha followed by displacement of bound flavin adenine dinucleotide from the active site of the enzyme. Modest concentrations of EN460 and a functionally related inhibitor, QM295, promote signaling in the unfolded protein response and precondition cells against severe ER stress. Together, these observations point to the feasibility of targeting the enzymatic activity of ERO1alpha with small molecule inhibitors.


Assuntos
Fibroblastos/fisiologia , Glicoproteínas/genética , Animais , Sobrevivência Celular , Fibroblastos/citologia , Fluorescência , Glutationa Transferase/genética , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Glicoproteínas/fisiologia , Cinética , Camundongos , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Oxirredutases , Consumo de Oxigênio , Desnaturação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência , Espectrofotometria , eIF-2 Quinase/deficiência
6.
J Biol Chem ; 285(24): 18155-65, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20348090

RESUMO

The sulfhydryl oxidase Ero1 oxidizes protein disulfide isomerase (PDI), which in turn catalyzes disulfide formation in proteins folding in the endoplasmic reticulum (ER). The extent to which other members of the PDI family are oxidized by Ero1 and thus contribute to net disulfide formation in the ER has been an open question. The yeast ER contains four PDI family proteins with at least one potential redox-active cysteine pair. We monitored the direct oxidation of each redox-active site in these proteins by yeast Ero1p in vitro. In this study, we found that the Pdi1p amino-terminal domain was oxidized most rapidly compared with the other oxidoreductase active sites tested, including the Pdi1p carboxyl-terminal domain. This observation is consistent with experiments conducted in yeast cells. In particular, the amino-terminal domain of Pdi1p preferentially formed mixed disulfides with Ero1p in vivo, and we observed synthetic lethality between a temperature-sensitive Ero1p variant and mutant Pdi1p lacking the amino-terminal active-site disulfide. Thus, the amino-terminal domain of yeast Pdi1p is on a preferred pathway for oxidizing the ER thiol pool. Overall, our results provide a rank order for the tendency of yeast ER oxidoreductases to acquire disulfides from Ero1p.


Assuntos
Retículo Endoplasmático/enzimologia , Glicoproteínas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Oxigênio/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Catálise , Domínio Catalítico , Dissulfetos/química , Flavinas/química , Variação Genética , Glutationa/metabolismo , Mutação , Oxigênio/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Temperatura
7.
Cell ; 129(2): 333-44, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17448992

RESUMO

Introduction of disulfide bonds into proteins entering the secretory pathway is catalyzed by Ero1p, which generates disulfide bonds de novo, and Pdi1p, which transfers disulfides to substrate proteins. A sufficiently oxidizing environment must be maintained in the endoplasmic reticulum (ER) to allow for disulfide formation, but a pool of reduced thiols is needed for isomerization of incorrectly paired disulfides. We have found that hyperoxidation of the ER is prevented by attenuation of Ero1p activity through noncatalytic cysteine pairs. Deregulated Ero1p mutants lacking certain cysteines show increased enzyme activity, a decreased lag phase in kinetic assays, and growth defects in vivo. We hypothesize that noncatalytic cysteine pairs in Ero1p sense the level of potential substrates in the ER and correspondingly modulate Ero1p activity as part of a homeostatic regulatory system governing the thiol-disulfide balance in the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Retroalimentação Fisiológica , Glicoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cistina/metabolismo , Dissulfetos/metabolismo , Retículo Endoplasmático/química , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Saccharomyces cerevisiae/crescimento & desenvolvimento
8.
Proc Natl Acad Sci U S A ; 103(2): 299-304, 2006 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16407158

RESUMO

Ero1p is a key enzyme in the disulfide bond formation pathway in eukaryotic cells in both aerobic and anaerobic environments. It was previously demonstrated that Ero1p can transfer electrons from thiol substrates to molecular oxygen. However, the fate of electrons under anaerobic conditions and the final fate of electrons under aerobic conditions remained obscure. To address these fundamental issues in the Ero1p mechanism, we studied the transfer of electrons from recombinant yeast Ero1p to various electron acceptors. Under aerobic conditions, reduction of molecular oxygen by Ero1p yielded stoichiometric hydrogen peroxide. Remarkably, we found that reduced Ero1p can transfer electrons to a variety of small and macromolecular electron acceptors in addition to molecular oxygen. In particular, Ero1p can catalyze reduction of exogenous FAD in solution. Free FAD is not required for the catalysis of dithiol oxidation by Ero1p, but it is sufficient to drive disulfide bond formation under anaerobic conditions. These findings provide insight into mechanisms for regenerating oxidized Ero1p and maintaining disulfide bond formation under anaerobic conditions in the endoplasmic reticulum.


Assuntos
Dissulfetos/metabolismo , Retículo Endoplasmático/enzimologia , Glicoproteínas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Catálise , Transporte de Elétrons , Flavinas/farmacologia , Glicoproteínas/química , Glicoproteínas/genética , Peróxido de Hidrogênio/farmacologia , Modelos Moleculares , Oxirredução/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Análise Espectral , Especificidade por Substrato , Compostos de Sulfidrila/metabolismo , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA