Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 36(sup1): 47-63, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31795835

RESUMO

Purpose: Enhancing immune responses in triple negative breast cancers (TNBCs) remains a challenge. Our study aimed to determine whether magnetic iron oxide nanoparticle (MION) hyperthermia (HT) can enhance abscopal effects with radiotherapy (RT) and immune checkpoint inhibitors (IT) in a metastatic TNBC model.Methods: One week after implanting 4T1-luc cells into the mammary glands of BALB/c mice, tumors were treated with RT (3 × 8 Gy)±local HT, mild (HTM, 43 °C/20 min) or partially ablative (HTAbl, 45 °C/5 min plus 43 °C/15 min),±IT with anti-PD-1 and anti-CTLA-4 antibodies (both 4 × 10 mg/kg, i.p.). Tumor growth was measured daily. Two weeks after treatment, lungs and livers were harvested for histopathology evaluation of metastases.Results: Compared to untreated controls, all treatment groups demonstrated a decreased tumor volume; however, when compared against surgical resection, only RT + HTM+IT, RT + HTAbl+IT and RT + HTAbl had similar or smaller tumors. These cohorts showed more infiltration of CD3+ T-lymphocytes into the primary tumor. Tumor growth effects were partially reversed with T-cell depletion. Combinations that proved most effective for primary tumors generated modest reductions in numbers of lung metastases. Conversely, numbers of lung metastases showed potential to increase following HT + IT treatment, particularly when compared to RT. Compared to untreated controls, there was no improvement in survival with any treatment.Conclusions: Single-fraction MION HT added to RT + IT improved local tumor control and recruitment of CD3+ T-lymphocytes, with only a modest effect to reduce lung metastases and no improvement in overall survival. HT + IT showed potential to increase metastatic dissemination to lungs.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Animais , Anticorpos Monoclonais/farmacologia , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Nanopartículas de Magnetita , Camundongos , Metástase Neoplásica , Transfecção
3.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1804-1815, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29514048

RESUMO

Intravascular ATP and adenosine have emerged as important regulators of endothelial barrier function, vascular remodeling and neovascularization at various pathological states, including hypoxia, inflammation and oxidative stress. By using human umbilical vein endothelial cells (HUVEC) and bovine vasa vasorum endothelial cells (VVEC) as representatives of macro- and microvessel phenotypes, this study was undertaken to evaluate cellular mechanisms contributing to physiological adaptation of vascular endothelium to hypoxia, with a particular emphasis on ectoenzymatic purine-converting activities and their link to intracellular ATP homeostasis and signaling pathways. Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), ecto-5'-nucleotidase/CD73 and ecto-adenylate kinase activities were determined by thin-layer chromatography (TLC) with 3H-labelled nucleotide substrates. Exposure of HUVEC and VVEC to 1% O2 for 4-24 h triggered rather moderate activation of ATP breakdown into adenosine via the CD39-CD73 axis. Additional TLC analysis of salvage pathways revealed the enhanced ability of hypoxic HUVEC to convert cell-incorporated [3H]adenosine into [3H]ADP/ATP. Furthermore, following a period of hypoxia, HUVEC underwent concurrent changes in intracellular signaling manifested in the depletion of putative ATP stores and targeted up-regulation of phospho-p53, p70S6K/mTOR and other tyrosine kinases. The revealed complex implication of both extrinsic and intrinsic mechanisms into a tuned hypoxia-induced control of purine homeostasis and signaling may open up further research for the development of pharmacological treatments to improve endothelial cell function under disease conditions associated with a loss of cellular ATP during oxygen deprivation.


Assuntos
5'-Nucleotidase/metabolismo , Trifosfato de Adenosina/metabolismo , Apirase/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Bovinos , Hipóxia Celular , Proteínas Ligadas por GPI/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Sci Rep ; 6: 28217, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27313062

RESUMO

Germ-line or somatic inactivation of BRCA1 is a defining feature for a portion of human breast cancers. Here we evaluated the anti-proliferative activity of 198 FDA-approved and experimental drugs against four BRCA1-mutant (HCC1937, MDA-MB-436, SUM1315MO2, and SUM149PT) and four BRCA1-wild-type (MDA-MB-231, SUM229PE, MCF10A, and MCF7) breast cancer cell lines. We found that all BRCA1-mutant cell lines were insensitive to inhibitors of mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) Selumetinib and Pimasertib in contrast to BRCA1-wildtype control cell lines. However, unexpectedly, only two BRCA1-mutant cell lines, HCC1937 and MDA-MB-436, were hypersensitive to a nucleotide analogue 6-thioguanine (6-TG). SUM149PT cells readily formed radiation-induced RAD51-positive nuclear foci indicating a functional homologous recombination, which may explain their resistance to 6-TG. However, the reason underlying 6-TG resistance of SUM1315MO2 cells remains unclear. Our data reveal a remarkable heterogeneity among BRCA1-mutant cell lines and provide a reference for future studies.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Proteína BRCA1/genética , Neoplasias da Mama/genética , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Tioguanina/farmacologia , Benzimidazóis/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Niacinamida/análogos & derivados , Niacinamida/farmacologia
5.
Front Pharmacol ; 7: 115, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199757

RESUMO

The use of cardiopulmonary bypass (CPB) and aortic cross-clamping causes myocardial ischemia-reperfusion injury (I-RI) and can lead to reduced postoperative cardiac function. We investigated whether this injury could be attenuated by thymosin beta 4 (TB4), a peptide which has showed cardioprotective effects. Pigs received either TB4 or vehicle and underwent CPB and aortic cross-clamping for 60 min with cold intermittent blood-cardioplegia and were then followed for 30 h. Myocardial function and blood flow was studied by cardiac magnetic resonance and PET imaging. Tissue and plasma samples were analyzed to determine the amount of cardiomyocyte necrosis and apoptosis as well as pharmacokinetics of the peptide. In vitro studies were performed to assess its influence on blood coagulation and vasomotor tone. Serum levels of the peptide were increased after administration compared to control samples. TB4 did not decrease the amount of cell death. Cardiac function and global myocardial blood flow was similar between the study groups. At high doses a vasoconstrictor effect on mesentery arteries and a vasodilator effect on coronary arteries was observed and blood clot firmness was reduced when tested in the presence of an antiplatelet agent. Despite promising results in previous trials the cardioprotective effect of TB4 was not demonstrated in this model for global myocardial I-RI.

6.
Purinergic Signal ; 12(3): 575-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27030122

RESUMO

Cell damage can lead to rapid release of ATP to extracellular space resulting in dramatic change in local ATP concentration. Evolutionary, this has been considered as a danger signal leading to adaptive responses in adjacent cells. Our aim was to demonstrate that elevated extracellular ATP or inhibition of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39) activity could be used to increase tolerance against DNA-damaging conditions. Human endothelial cells, with increased extracellular ATP concentration in cell proximity, were more resistant to irradiation or chemically induced DNA damage evaluated with the DNA damage markers γH2AX and phosphorylated p53. In our rat models of DNA damage, inhibiting CD39-driven ATP hydrolysis with POM-1 protected the heart and lung tissues against chemically induced DNA damage. Interestingly, the phenomenon could not be replicated in cancer cells. Our results show that transient increase in extracellular ATP can promote resistance to DNA damage.


Assuntos
Trifosfato de Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Dano ao DNA/fisiologia , Células Endoteliais/metabolismo , Animais , Western Blotting , Células Endoteliais/patologia , Espaço Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley
7.
Hum Mutat ; 36(7): 694-703, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25820511

RESUMO

Mutations in the LMNA gene coding for the nuclear lamina proteins lamin A and its smaller splice form lamin C associate with a heterogeneous group of diseases collectively called laminopathies. Here, we describe a 2-year-old patient with a previously undescribed phenotype including right ventricular cardiomyopathy, progeroid features, and premature death. Sequencing of LMNA revealed a novel heterozygous de novo mutation p.L306R located in the α-helical rod domain of A-type lamins. Fibroblasts from the patient showed reduced proliferation and early premature replicative senescence, as characterized by progressive hyperlobulation of the nuclei, abnormally clustered centromeres, loss of lamin B1, and reorganization of promyelocytic leukemia nuclear bodies. Furthermore, the patient cells were more sensitive to double-strand DNA breaks. Similar structural and phenotypic defects were observed in normal fibroblasts transfected with FLAG-tagged p.L306R lamin A. Correspondingly, in vitro assembly studies revealed that the p.L306R generates a "hyper-assembly" mutant of lamin A that forms extensive fiber arrays under physiological conditions where wild-type lamin A is still largely soluble. In summary, we report a novel LMNA p.L306R mutation that leads to previously undescribed hyper-assembly of lamin A, heavy distortion of nuclear shape and that manifests as right ventricular cardiomyopathy and premature aging.


Assuntos
Senilidade Prematura/genética , Displasia Arritmogênica Ventricular Direita/genética , Estudos de Associação Genética , Lamina Tipo A/genética , Polimorfismo de Nucleotídeo Único , Deleção de Sequência , Displasia Arritmogênica Ventricular Direita/patologia , Sequência de Bases , Pré-Escolar , Fibroblastos/metabolismo , Humanos , Masculino , Fenótipo
8.
Am J Physiol Lung Cell Mol Physiol ; 308(10): L1046-57, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25820525

RESUMO

Endothelial cell (EC) dysfunction plays a role in the pathobiology of occlusive vasculopathy in pulmonary arterial hypertension (PAH). Purinergic signaling pathways, which consist of extracellular nucleotide and nucleoside-mediated cell signaling through specific receptors, are known to be important regulators of vascular tone and remodeling. Therefore, we hypothesized that abnormalities in the vascular purinergic microenvironment are associated with PAH. Enzymatic clearance is crucial to terminate unnecessary cell activation; one of the most abundantly expressed enzymes on the EC surface is E-NTPDase1/CD39, which hydrolyzes ATP and ADP to AMP. we used histological samples from patients and healthy donors, radioisotope-labeled substrates to measure ectoenzyme activity, and a variety of in vitro approaches to study the role of CD39 in PAH. Immunohistochemistry on human idiopathic PAH (IPAH) patients' lungs demonstrated that CD39 was significantly downregulated in the endothelium of diseased small arteries. Similarly, CD39 expression and activity were decreased in cultured pulmonary ECs from IPAH patients. Suppression of CD39 in vitro resulted in EC phenotypic switch that gave rise to apoptosis-resistant pulmonary arterial endothelial cells and promoted a microenvironment that induced vascular smooth muscle cell migration. we also identified that the ATP receptor P2Y11 is essential for ATP-mediated EC survival. Furthermore, we report that apelin, a known regulator of pulmonary vascular homeostasis, can potentiate the activity of CD39 both in vitro and in vivo. we conclude that sustained attenuation of CD39 activity through ATP accumulation is tightly linked to vascular dysfunction and remodeling in PAH and could represent a novel target for therapy.


Assuntos
Antígenos CD/biossíntese , Apirase/biossíntese , Hipertensão Pulmonar/enzimologia , Artéria Pulmonar/enzimologia , Remodelação Vascular , Trifosfato de Adenosina/metabolismo , Adulto , Apelina , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Humanos , Hipertensão Pulmonar/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/patologia , Receptores Purinérgicos P2/metabolismo
9.
Am J Respir Cell Mol Biol ; 50(6): 1118-28, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24433082

RESUMO

Occlusive vasculopathy with intimal hyperplasia and plexogenic arteriopathy are severe histopathological changes characteristic of pulmonary arterial hypertension (PAH). Although a phenotypic switch in pulmonary endothelial cells (ECs) has been suggested to play a critical role in the formation of occlusive lesions, the pathobiology of this process is poorly understood. The goal of this study was to identify novel molecular mechanisms associated with EC dysfunction and PAH-associated bone morphogenetic protein receptor 2 (BMPR2) deficiency during PAH pathogenesis. A bioinfomatics approach, patient samples, and in vitro experiments were used. By combining a metaanalysis of human idiopathic PAH (iPAH)-associated gene-expression microarrays and a unique gene expression-profiling technique in rat endothelium, our bioinformatics approach revealed a PAH-associated dysregulation of genes involving chromatin organization, DNA metabolism, and repair. Our hypothesis that altered DNA repair and loss of genomic stability play a role in PAH was supported by in vitro assays where pulmonary ECs from patients with iPAH and BMPR2-deficient ECs were highly susceptible to DNA damage. Furthermore, we showed that BMPR2 expression is tightly linked to DNA damage control because excessive DNA damage leads to rapid down-regulation of BMPR2 expression. Moreover, we identified breast cancer 1 (BRCA1) as a novel target for BMPR2 signaling and a novel modulator of pulmonary EC homeostasis. We show here that BMPR2 signaling plays a critical role in the regulation of genomic integrity in pulmonary ECs via genes such as BRCA1. We propose that iPAH-associated EC dysfunction and genomic instability are mediated through BMPR2 deficiency-associated loss of DNA damage control.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Reparo do DNA , Hipertensão Pulmonar/genética , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Regulação para Baixo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Hipertensão Pulmonar Primária Familiar , Expressão Gênica , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Transdução de Sinais
10.
Biochim Biophys Acta ; 1823(10): 1967-75, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22967714

RESUMO

Purinergic signaling cascade includes the release of endogenous ATP and other agonists by chemical and mechanical stimuli, modulation of diverse cellular functions and subsequent ectoenzymatic inactivation. Basal release of extracellular purines and its physiological relevance remain controversial. Here we employed a combination of enzyme-coupled approaches for simultaneous bioluminescent (ATP, ADP, PP(i)) and fluorometric (AMP), adenosine, inosine, hypoxanthine) measurements of ATP and its metabolites without additional manipulations or derivatization of sampled biological fluids. By using these sensing techniques, extracellular purines were determined in various cells and tissues both at resting and pro-inflammatory conditions. The results obtained revealed the ability of endothelial, lymphoid and tumor cells to maintain extracellular ATP, ADP and adenosine at certain characteristic nanomolar levels. By quantifying the amounts of endogenously released and/or exogenously applied purines and their metabolites, these sensing techniques may be applied for evaluating purine-converting pathways on the cell surfaces and also for ex vivo analysis of purine homeostasis in the intact tissues. Furthermore, we provide novel insight into the mechanisms underlying tumorigenic effects of ATP by demonstrating the ability of metastatic prostate carcinoma PC3 and breast cancer MDA-MB-231 cells to maintain PP(i), which derives from extracellular ATP in the course of nucleotide pyrophosphatase/phosphodiesterase reaction. Collectively, the results imply a complex pattern of nucleotide turnover where extracellular ATP, ADP and adenosine are maintained at steady-state levels via conunterbalanced release and inactivation of ATP and other purines, and further suggest the importance of basal agonist release for continuous activation and/or desensitization of purinergic receptors.


Assuntos
Difosfatos/metabolismo , Ensaios Enzimáticos/métodos , Líquido Extracelular/metabolismo , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Fluorometria , Homeostase , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/metabolismo , Inosina/metabolismo , Medições Luminescentes , Linfócitos/metabolismo , Metástase Neoplásica , Pirofosfatases/metabolismo
11.
Angiogenesis ; 14(4): 503-13, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21922294

RESUMO

Vascular remodeling plays a pivotal role in a variety of pathophysiological conditions where hypoxia and inflammation are prominent features. Intravascular ATP, ADP and adenosine are known as important regulators of vascular tone, permeability and homeostasis, however contribution of purinergic signalling to endothelial cell growth and angiogenesis remains poorly understood. By using vasa vasorum endothelial cells (VVEC) isolated from pulmonary artery adventitia of control and chronically hypoxic neonatal calves, these studies were aimed to evaluate the effect of hypoxia on biochemical and functional properties of microvascular endothelial network at the sites of angiogenesis. In comparison with normoxic controls, VVEC from hypoxic animals are characterized by (1) drastically impaired nucleoside triphosphate diphosphohydrolase-1 (NTPDase-1/CD39) and ecto-5'-nucleotidase/CD73 activities with respective increases in basal extracellular ATP and ADP levels (2) higher proliferative responses to low micromolar concentrations of ATP and ADP; and (3) enhanced permeability and disordered adenosinergic control of vascular barrier function (measured as a paracellular flux of 70 kDa fluorescein isothiocyanate-dextran). Together, these results suggest that unique pattern of purine-mediated angiogenic activation and enhanced leakiness of VVEC from chronically hypoxic vessels may be defined by disordered endothelial nucleotide homeostasis at sites of active neovascularization.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Neovascularização Patológica/metabolismo , Artéria Pulmonar/citologia , Vasa Vasorum/citologia , Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Western Blotting , Permeabilidade Capilar/fisiologia , Bovinos , Proliferação de Células , AMP Cíclico/metabolismo , Primers do DNA/genética , Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Análise de Regressão , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA