Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
J Neurochem ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063257

RESUMO

Glutamate recycling between neurons and astrocytes is essential to maintain neurotransmitter homeostasis. Disturbances in glutamate homeostasis, resulting in excitotoxicity and neuronal death, have been described as a potential mechanism in Alzheimer's disease (AD) pathophysiology. However, glutamate neurotransmitter metabolism in different human brain cells, particularly astrocytes, has been poorly investigated at the early stages of AD. We sought to investigate glucose and glutamate metabolism in AD by employing human induced pluripotent stem cell (hiPSC)-derived astrocytes and neurons carrying mutations in the amyloid precursor protein (APP) or presenilin-1 (PSEN-1) gene as found in familial types of AD (fAD). Methods such as live-cell bioenergetics and metabolic mapping using [13 C]-enriched substrates were used to examine metabolism in the early stages of AD. Our results revealed greater glycolysis and glucose oxidative metabolism in astrocytes and neurons with APP or PSEN-1 mutations, accompanied by an elevated glutamate synthesis compared to control WT cells. Astrocytes with APP or PSEN-1 mutations exhibited reduced expression of the excitatory amino acid transporter 2 (EAAT2), and glutamine uptake increased in mutated neurons, with enhanced glutamate release specifically in neurons with a PSEN-1 mutation. These results demonstrate a hypermetabolic phenotype in astrocytes with fAD mutations possibly linked to toxic glutamate accumulation. Our findings further identify metabolic imbalances that may occur in the early phases of AD pathophysiology.

2.
Acta Anaesthesiol Scand ; 67(9): 1239-1248, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37288935

RESUMO

BACKGROUND: Among ICU patients with COVID-19, it is largely unknown how the overall outcome and resource use have changed with time, different genetic variants, and vaccination status. METHODS: For all Danish ICU patients with COVID-19 from March 10, 2020 to March 31, 2022, we manually retrieved data on demographics, comorbidities, vaccination status, use of life support, length of stay, and vital status from medical records. We compared patients based on the period of admittance and vaccination status and described changes in epidemiology related to the Omicron variant. RESULTS: Among all 2167 ICU patients with COVID-19, 327 were admitted during the first (March 10-19, 2020), 1053 during the second (May 20, 2020 to June 30, 2021) and 787 during the third wave (July 1, 2021 to March 31, 2022). We observed changes over the three waves in age (median 72 vs. 68 vs. 65 years), use of invasive mechanical ventilation (81% vs. 58% vs. 51%), renal replacement therapy (26% vs. 13% vs. 12%), extracorporeal membrane oxygenation (7% vs. 3% vs. 2%), duration of invasive mechanical ventilation (median 13 vs. 13 vs. 9 days) and ICU length of stay (median 13 vs. 10 vs. 7 days). Despite these changes, 90-day mortality remained constant (36% vs. 35% vs. 33%). Vaccination rates among ICU patients were 42% as compared to 80% in society. Unvaccinated versus vaccinated patients were younger (median 57 vs. 73 years), had less comorbidity (50% vs. 78%), and had lower 90-day mortality (29% vs. 51%). Patient characteristics changed significantly after the Omicron variant became dominant including a decrease in the use of COVID-specific pharmacological agents from 95% to 69%. CONCLUSIONS: In Danish ICUs, the use of life support declined, while mortality seemed unchanged throughout the three waves of COVID-19. Vaccination rates were lower among ICU patients than in society, but the selected group of vaccinated patients admitted to the ICU still had very severe disease courses. When the Omicron variant became dominant a lower fraction of SARS-CoV-2 positive patients received COVID treatment indicating other causes for ICU admission.


Assuntos
COVID-19 , Humanos , COVID-19/terapia , Cuidados Críticos , Dinamarca/epidemiologia , SARS-CoV-2 , Idoso
3.
Acta Anaesthesiol Scand ; 66(8): 987-995, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781689

RESUMO

BACKGROUND: Characteristics and care of intensive care unit (ICU) patients with COVID-19 may have changed during the pandemic, but longitudinal data assessing this are limited. We compared patients with COVID-19 admitted to Danish ICUs in the first wave with those admitted later. METHODS: Among all Danish ICU patients with COVID-19, we compared demographics, chronic comorbidities, use of organ support, length of stay and vital status of those admitted 10 March to 19 May 2020 (first wave) versus 20 May 2020 to 30 June 2021. We analysed risk factors for death by adjusted logistic regression analysis. RESULTS: Among all hospitalised patients with COVID-19, a lower proportion was admitted to ICU after the first wave (13% vs. 8%). Among all 1374 ICU patients with COVID-19, 326 were admitted during the first wave. There were no major differences in patient's characteristics or mortality between the two periods, but use of invasive mechanical ventilation (81% vs. 58% of patients), renal replacement therapy (26% vs. 13%) and ECMO (8% vs. 3%) and median length of stay in ICU (13 vs. 10 days) and in hospital (20 vs. 17 days) were all significantly lower after the first wave. Risk factors for death were higher age, larger burden of comorbidities (heart failure, pulmonary disease and kidney disease) and active cancer, but not admission during or after the first wave. CONCLUSIONS: After the first wave of COVID-19 in Denmark, a lower proportion of hospitalised patients with COVID-19 were admitted to ICU. Among ICU patients, use of organ support was lower and length of stay was reduced, but mortality rates remained at a relatively high level.


Assuntos
COVID-19 , COVID-19/terapia , Dinamarca/epidemiologia , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Pandemias , Estudos Retrospectivos , SARS-CoV-2
4.
Mol Psychiatry ; 27(9): 3749-3759, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35618886

RESUMO

The way in which brain morphology and proteome are remodeled during embryonal development, and how they are linked to the cellular metabolism, could be a key for elucidating the pathological mechanisms of certain neurodevelopmental disorders. Cerebral organoids derived from autism spectrum disorder (ASD) patients were generated to capture critical time-points in the neuronal development, and metabolism and protein expression were investigated. The early stages of development, when neurogenesis commences (day in vitro 39), appeared to be a critical timepoint in pathogenesis. In the first month of development, increased size in ASD-derived organoids were detected in comparison to the controls. The size of the organoids correlates with the number of proliferating cells (Ki-67 positive cells). A significant difference in energy metabolism and proteome phenotype was also observed in ASD organoids at this time point, specifically, prevalence of glycolysis over oxidative phosphorylation, decreased ATP production and mitochondrial respiratory chain activity, differently expressed cell adhesion proteins, cell cycle (spindle formation), cytoskeleton, and several transcription factors. Finally, ASD patients and controls derived organoids were clustered based on a differential expression of ten proteins-heat shock protein 27 (hsp27) phospho Ser 15, Pyk (FAK2), Elk-1, Rac1/cdc42, S6 ribosomal protein phospho Ser 240/Ser 244, Ha-ras, mTOR (FRAP) phospho Ser 2448, PKCα, FoxO3a, Src family phospho Tyr 416-at day 39 which could be defined as potential biomarkers and further investigated for potential drug development.


Assuntos
Transtorno do Espectro Autista , Fenômenos Biológicos , Humanos , Organoides , Transtorno do Espectro Autista/genética , Proteômica , Proteoma/genética , Fenótipo , Metabolismo Energético
5.
PLoS One ; 17(5): e0268654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617296

RESUMO

In Africa, children aged 5 to 15 years (school age) comprises more than 50% (>339 million) of the under 19 years population, and are highly burdened by malaria and anaemia that impair cognitive development. For the prospects of improving health in African citizens, understanding malaria and its relation to anaemia in school-aged children, it is crucial to inform targeted interventions for malaria control and accelerate elimination efforts as part of improved school health policy. We conducted a study to determine the risk factors for asymptomatic malaria and their association to anaemia. We explored the prevalence of antimalarial drug resistance as well as the association of asymptomatic malaria infection and anaemia on cognitive and psychomotor functions in school-aged children living in high endemic areas. This study was a comprehensive baseline survey, within the scope of a randomised, controlled trial on the effectiveness and safety of antimalarial drugs in preventing malaria and its related morbidity in schoolchildren. We enrolled 1,587 schoolchildren from 7 primary schools located in Muheza, north-eastern Tanzania. Finger-pricked blood samples were collected for estimation of malaria parasitaemia using a microscope, haemoglobin concentration using a haemoglobinometer, and markers of drug resistance processed from dried blood spots (DBS). Psychomotor and Cognitive functions were assessed using a '20 metre Shuttle run' and a test of everyday attention for children (TEA-Ch), respectively. The prevalence of asymptomatic malaria parasitaemia, anaemia and stunting was 26.4%, 49.8%, and 21.0%, respectively with marked variation across schools. In multivariate models, asymptomatic malaria parasitaemia attributed to 61% of anaemia with a respective population attribution fraction of 16%. Stunting, not sleeping under a bednet and illiterate parent or guardian were other factors attributing to 7%, 9%, and 5% of anaemia in the study population, respectively. Factors such as age group (10-15 years), not sleeping under a bednet, low socioeconomic status, parents' or guardians' with a low level of education, children overcrowding in a household, and fewer rooms in a household were significantly attributed to higher malaria infection. There was no significant association between malaria infection or anaemia and performance on tests of cognitive function (sustained attention) or psychomotor function (VO2 max). However, a history of malaria in the past one month was significantly associated with decreased cognitive scores (aOR = -4.1, 95% CI -7.7-0.6, p = 0.02). Furthermore, stunted children had significantly lower VO2max scores (aOR = -1.9, 95% CI -3.0-0.8, p = 0.001). Regarding the antimalarial drug resistance markers, the most prevalent Pfmdr1 86-184-1034-1042-1246 haplotypes were the NFSND in 47% (n = 88) and the NYSND in 52% (n = 98). The wild type Pfcrt haplotypes (codons 72-76, CVMNK) were found in 99.1% (n = 219) of the samples. Malaria, stunting and parents' or guardians' illiteracy were the key attributable factors for anaemia in schoolchildren. Given malaria infection in schoolchildren is mostly asymptomatic; an addition of interventional programmes such as intermittent preventive treatment of malaria in schoolchildren (IPTsc) would probably act as a potential solution while calling for an improvement in the current tools such as bednet use, school food programme, and community-based (customised) health education with an emphasis on nutrition and malaria control.


Assuntos
Anemia , Antimaláricos , Malária , Anemia/complicações , Anemia/tratamento farmacológico , Anemia/epidemiologia , Antimaláricos/uso terapêutico , Infecções Assintomáticas , Criança , Cognição , Transtornos do Crescimento/tratamento farmacológico , Humanos , Malária/complicações , Malária/tratamento farmacológico , Malária/epidemiologia , Parasitemia/epidemiologia , Prevalência , Fatores de Risco , Tanzânia/epidemiologia
6.
J Cereb Blood Flow Metab ; 42(8): 1507-1523, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35048735

RESUMO

Anaplerosis occurs predominately in astroglia through the action of pyruvate carboxylase (PC). The rate of PC (Vpc) has been reported for cerebral cortex (or whole brain) of awake humans and anesthetized rodents, but regional brain rates remain largely unknown and, hence, were subjected to investigation in the current study. Awake male rats were infused with either [2-13C]glucose or [1-13C]glucose (n = 27/30) for 8, 15, 30, 60 or 120 min, followed by rapid euthanasia with focused-beam microwave irradiation to the brain. Blood plasma and extracts of cerebellum, hippocampus, striatum, and cerebral cortex were analyzed by 1H-[13C]-NMR to establish 13C-enrichment time courses for glutamate-C4,C3,C2, glutamine-C4,C3, GABA-C2,C3,C4 and aspartate-C2,C3. Metabolic rates were determined by fitting a three-compartment metabolic model (glutamatergic and GABAergic neurons and astroglia) to the eighteen time courses. Vpc varied by 44% across brain regions, being lowest in the cerebellum (0.087 ± 0.004 µmol/g/min) and highest in striatum (0.125 ± 0.009) with intermediate values in cerebral cortex (0.106 ± 0.005) and hippocampus (0.114 ± 0.005). Vpc constituted 13-19% of the oxidative glucose consumption rate. Combination of cerebral cortical data with literature values revealed a positive correlation between Vpc and the rates of glutamate/glutamine-cycling and oxidative glucose consumption, respectively, consistent with earlier observations.


Assuntos
Ácido Glutâmico , Piruvato Carboxilase , Animais , Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Masculino , Neurônios/metabolismo , Neurotransmissores/metabolismo , Piruvato Carboxilase/metabolismo , Ratos , Vigília , Ácido gama-Aminobutírico/metabolismo
7.
Disabil Rehabil ; 44(5): 807-816, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32568564

RESUMO

PURPOSE: To translate and cross-culturally adapt the ABILHAND-Kids questionnaire into Danish and assess its psychometric properties in children with cerebral palsy (CP). MATERIALS AND METHODS: A Danish version of the parent-reported ABILHAND-Kids questionnaire was created through a standardized translation process. Dimensionality (confirmatory factor analysis), reliability, smallest detectable change, floor and ceiling effects, and Rasch analysis were carried out. RESULTS: One-hundred-and-fifty children diagnosed with CP were included. No parent had difficulty completing the ABILHAND-Kids (DK). Psychometric testing demonstrated a unidimensional scale, excellent test-retest reliability (ICC2.1A = 0.97) and internal consistency (α = 0.96). A smallest detectable change of 5.15 points was considered acceptable. One item showed Differential Item Functioning, four pairs of items showed signs of local dependence and one item had disordered thresholds. Nevertheless, analyses did not lead to the removal of any items. Item thresholds covered most levels of person abilities. Lastly, 24.7% scored within measurement error at the ceiling of the scale, indicating that it was not possible to measure further improvement. CONCLUSION: ABILHAND-Kids (DK) seems to be a valid, reliable and comprehensive measurement scale to assess manual ability in children with CP. It can be used in goal setting and to inform future interventions and rehabilitation evaluation.IMPLICATIONS FOR REHABILITATIONImpaired hand function leads to limited participation in activities of everyday life in children with cerebral palsy.Adequate outcome measures of hand function are crucial for the planning and evaluation of interventions.The Danish version of ABILHAND-Kids is a valid and reliable measure of manual ability in children with cerebral palsy, and it can be used in clinical practice and for research purposes.


Assuntos
Paralisia Cerebral , Paralisia Cerebral/reabilitação , Criança , Dinamarca , Avaliação da Deficiência , Humanos , Psicometria , Reprodutibilidade dos Testes , Inquéritos e Questionários
8.
Front Aging Neurosci ; 13: 736580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603012

RESUMO

The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important nitrogen donors for synthesis of glutamate, the main excitatory neurotransmitter in the brain. The glutamate carbon skeleton originates from the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate, while the amino group is derived from nitrogen donors such as the BCAAs. Disturbances in neurotransmitter homeostasis, mainly of glutamate, are strongly implicated in the pathophysiology of Alzheimer's disease (AD). The divergent BCAA metabolism in different cell types of the human brain is poorly understood, and so is the involvement of astrocytic and neuronal BCAA metabolism in AD. The goal of this study is to provide the first functional characterization of BCAA metabolism in human brain tissue and to investigate BCAA metabolism in AD pathophysiology using astrocytes and neurons derived from human-induced pluripotent stem cells (hiPSCs). Mapping of BCAA metabolism was performed using mass spectrometry and enriched [15N] and [13C] isotopes of leucine, isoleucine, and valine in acutely isolated slices of surgically resected cerebral cortical tissue from human brain and in hiPSC-derived brain cells carrying mutations in either amyloid precursor protein (APP) or presenilin-1 (PSEN-1). We revealed that both human astrocytes of acutely isolated cerebral cortical slices and hiPSC-derived astrocytes were capable of oxidatively metabolizing the carbon skeleton of BCAAs, particularly to support glutamine synthesis. Interestingly, hiPSC-derived astrocytes with APP and PSEN-1 mutations exhibited decreased amino acid synthesis of glutamate, glutamine, and aspartate derived from leucine metabolism. These results clearly demonstrate that there is an active BCAA metabolism in human astrocytes, and that leucine metabolism is selectively impaired in astrocytes derived from the hiPSC models of AD. This impairment in astrocytic BCAA metabolism may contribute to neurotransmitter and energetic imbalances in the AD brain.

9.
Cell Death Dis ; 12(11): 954, 2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34657143

RESUMO

Alzheimer's disease (AD) is an unremitting neurodegenerative disorder characterized by cerebral amyloid-ß (Aß) accumulation and gradual decline in cognitive function. Changes in brain energy metabolism arise in the preclinical phase of AD, suggesting an important metabolic component of early AD pathology. Neurons and astrocytes function in close metabolic collaboration, which is essential for the recycling of neurotransmitters in the synapse. However, this crucial metabolic interplay during the early stages of AD development has not been sufficiently investigated. Here, we provide an integrative analysis of cellular metabolism during the early stages of Aß accumulation in the cerebral cortex and hippocampus of the 5xFAD mouse model of AD. Our electrophysiological examination revealed an increase in spontaneous excitatory signaling in the 5xFAD hippocampus. This hyperactive neuronal phenotype coincided with decreased hippocampal tricarboxylic acid (TCA) cycle metabolism mapped by stable 13C isotope tracing. Particularly, reduced astrocyte TCA cycle activity and decreased glutamine synthesis led to hampered neuronal GABA synthesis in the 5xFAD hippocampus. In contrast, the cerebral cortex of 5xFAD mice displayed an elevated capacity for oxidative glucose metabolism, which may suggest a metabolic compensation in this brain region. We found limited changes when we explored the brain proteome and metabolome of the 5xFAD mice, supporting that the functional metabolic disturbances between neurons and astrocytes are early primary events in AD pathology. In addition, synaptic mitochondrial and glycolytic function was selectively impaired in the 5xFAD hippocampus, whereas non-synaptic mitochondrial function was maintained. These findings were supported by ultrastructural analyses demonstrating disruptions in mitochondrial morphology, particularly in the 5xFAD hippocampus. Collectively, our study reveals complex regional and cell-specific metabolic adaptations in the early stages of amyloid pathology, which may be fundamental for the progressing synaptic dysfunctions in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Astrócitos/metabolismo , Hipocampo/patologia , Sinapses/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Metabolismo Energético , Glucose/metabolismo , Glutamina/metabolismo , Glicólise , Hipocampo/metabolismo , Masculino , Metaboloma , Camundongos Transgênicos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Neurotransmissores/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Sinapses/ultraestrutura
10.
Glia ; 69(12): 2828-2844, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34378239

RESUMO

Mobilization of astrocyte glycogen is key for processes such as synaptic plasticity and memory formation but the link between neuronal activity and glycogen breakdown is not fully known. Activation of cytosolic soluble adenylyl cyclase (sAC) in astrocytes has been suggested to link neuronal depolarization and glycogen breakdown partly based on experiments employing pharmacological inhibition of sAC. However, several studies have revealed that sAC located within mitochondria is a central regulator of respiration and oxidative phosphorylation. Thus, pharmacological sAC inhibition is likely to affect both cytosolic and mitochondrial sAC and if bioenergetic readouts are studied, the observed effects are likely to stem from inhibition of mitochondrial rather than cytosolic sAC. Here, we report that a pharmacologically induced inhibition of sAC activity lowers mitochondrial respiration, induces phosphorylation of the metabolic master switch AMP-activated protein kinase (AMPK), and decreases glycogen stores in cultured primary murine astrocytes. From these data and our discussion of the literature, mitochondrial sAC emerges as a key regulator of astrocyte bioenergetics. Lastly, we discuss the challenges of investigating the functional and metabolic roles of cytosolic versus mitochondrial sAC in astrocytes employing the currently available pharmacological tool compounds.


Assuntos
Proteínas Quinases Ativadas por AMP , Inibidores de Adenilil Ciclases , Adenilil Ciclases , Astrócitos , Glicogênio , Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Ativação Enzimática/efeitos dos fármacos , Glicogênio/metabolismo , Camundongos , Mitocôndrias/enzimologia , Fosforilação Oxidativa
11.
Foods ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208094

RESUMO

Acidification and nutrient depletion by dairy starter cultures is often sufficient to prevent outgrowth of pathogens during post-processing of cultured dairy products. In the case of cottage cheese, however, the addition of cream dressing to the curd and subsequent cooling procedures can create environments that may be hospitable for the growth of Listeria monocytogenes. We report on a non-bacterio-cinogenic Lacticaseibacillus rhamnosus strain that severely limits the growth potential of L. monocytogenes in creamed cottage cheese. The main mechanism underlying Listeria spp. inhibition was found to be caused by depletion of manganese (Mn), thus through competitive exclusion of a trace element essential for the growth of many microorganisms. Growth of Streptococcus thermophilus and Lactococcus lactis that constitute the starter culture, on the other hand, were not influenced by reduced Mn levels. Addition of L. rhamnosus with Mn-based bioprotective properties during cottage cheese production therefore offers a solution to inhibit undesired bacteria in a bacteriocin-independent fashion.

12.
Neuropharmacology ; 196: 108719, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273389

RESUMO

Glutamate is the primary excitatory neurotransmitter of the brain. Cellular homeostasis of glutamate is of paramount importance for normal brain function and relies on an intricate metabolic collaboration between neurons and astrocytes. Glutamate is extensively recycled between neurons and astrocytes in a process known as the glutamate-glutamine cycle. The recycling of glutamate is closely linked to brain energy metabolism and is essential to sustain glutamatergic neurotransmission. However, a considerable amount of glutamate is also metabolized and serves as a metabolic hub connecting glucose and amino acid metabolism in both neurons and astrocytes. Disruptions in glutamate clearance, leading to neuronal overstimulation and excitotoxicity, have been implicated in several neurodegenerative diseases. Furthermore, the link between brain energy homeostasis and glutamate metabolism is gaining attention in several neurological conditions. In this review, we provide an overview of the dynamics of synaptic glutamate homeostasis and the underlying metabolic processes with a cellular focus on neurons and astrocytes. In particular, we review the recently discovered role of neuronal glutamate uptake in synaptic glutamate homeostasis and discuss current advances in cellular glutamate metabolism in the context of Alzheimer's disease and Huntington's disease. Understanding the intricate regulation of glutamate-dependent metabolic processes at the synapse will not only increase our insight into the metabolic mechanisms of glutamate homeostasis, but may reveal new metabolic targets to ameliorate neurodegeneration.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/metabolismo , Animais , Metabolismo Energético , Homeostase , Humanos , Doença de Huntington/metabolismo
13.
Front Neurosci ; 15: 646291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220417

RESUMO

Impaired liver function may lead to hyperammonemia and risk for hepatic encephalopathy. In brain, detoxification of ammonia is mediated mainly by glutamine synthetase (GS) in astrocytes. This requires a continuous de novo synthesis of glutamate, likely involving the action of both pyruvate carboxylase (PC) and glutamate dehydrogenase (GDH). An increased PC activity upon ammonia exposure and the importance of PC activity for glutamine synthesis has previously been demonstrated while the importance of GDH for generation of glutamate as precursor for glutamine synthesis has received little attention. We therefore investigated the functional importance of GDH for brain metabolism during hyperammonemia. To this end, brain slices were acutely isolated from transgenic CNS-specific GDH null or litter mate control mice and incubated in aCSF containing [U-13C]glucose in the absence or presence of 1 or 5 mM ammonia. In another set of experiments, brain slices were incubated in aCSF containing 1 or 5 mM 15N-labeled NH4Cl and 5 mM unlabeled glucose. Tissue extracts were analyzed for isotopic labeling in metabolites and for total amounts of amino acids. As a novel finding, we reveal a central importance of GDH function for cerebral ammonia fixation and as a prerequisite for de novo synthesis of glutamate and glutamine during hyperammonemia. Moreover, we demonstrated an important role of the concerted action of GDH and alanine aminotransferase in hyperammonemia; the products alanine and α-ketoglutarate serve as an ammonia sink and as a substrate for ammonia fixation via GDH, respectively. The role of this mechanism in human hyperammonemic states remains to be studied.

14.
Neurochem Res ; 46(10): 2551-2579, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34057673

RESUMO

Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure known to increase intracellular Ca2+ levels and cause exocytotic glutamate release, the dynamics of which were monitored using single cell fluorescence microscopy. Our data indicate that glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen storage, sustained glutamate release, while the availability of lactate significantly reduced the release of glutamate from astrocytes. Based on further pharmacological manipulation during imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids. Proteomics analysis further unveiled complex changes in protein profiles, which were condition-dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes. These findings support the notion that the availability of energy sources and metabolic milieu play a significant role in gliotransmission.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Ácido Láctico/metabolismo , Animais , Cálcio/metabolismo , Exocitose/fisiologia , Proteoma/metabolismo , Proteômica , Ratos Sprague-Dawley
15.
Eur J Heart Fail ; 23(11): 1875-1887, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33881206

RESUMO

AIMS: Heart failure (HF) is a major public health concern worldwide. The diversity of HF makes it challenging to decipher the underlying complex pathological processes using single biomarkers. We examined the association between urinary peptides and HF with reduced (HFrEF), mid-range (HFmrEF) and preserved (HFpEF) ejection fraction, defined based on the European Society of Cardiology guidelines, and the links between these peptide biomarkers and molecular pathophysiology. METHODS AND RESULTS: Analysable data from 5608 participants were available in the Human Urinary Proteome database. The urinary peptide profiles from participants diagnosed with HFrEF, HFmrEF, HFpEF and controls matched for sex, age, estimated glomerular filtration rate, systolic and diastolic blood pressure, diabetes and hypertension were compared applying the Mann-Whitney test, followed by correction for multiple testing. Unsupervised learning algorithms were applied to investigate groups of similar urinary profiles. A total of 577 urinary peptides significantly associated with HF were sequenced, 447 of which (77%) were collagen fragments. In silico analysis suggested that urinary biomarker abnormalities in HF principally reflect changes in collagen turnover and immune response, both associated with fibrosis. Unsupervised clustering separated study participants into two clusters, with 83% of non-HF controls allocated to cluster 1, while 65% of patients with HF were allocated to cluster 2 (P < 0.0001). No separation based on HF subtype was detectable. CONCLUSIONS: Heart failure, irrespective of ejection fraction subtype, was associated with differences in abundance of urinary peptides reflecting collagen turnover and inflammation. These peptides should be studied as tools in early detection, prognostication, and prediction of therapeutic response.


Assuntos
Insuficiência Cardíaca , Humanos , Peptídeos , Prognóstico , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia
16.
Neurochem Res ; 46(10): 2676-2686, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33710537

RESUMO

Alterations in neurotransmitter homeostasis, primarily of glutamate and GABA, is strongly implicated in the pathophysiology of Alzheimer's disease (AD). Homeostasis at the synapse is maintained by neurotransmitter recycling between neurons and astrocytes. Astrocytes support neuronal transmission through glutamine synthesis, which can be derived from oxidative metabolism of GABA. However, the precise implications of astrocytic GABA metabolism in AD remains elusive. The aim of this study was to investigate astrocytic GABA metabolism in AD pathology implementing human induced pluripotent stem cells derived astrocytes. Metabolic mapping of GABA was performed with [U-13C]GABA stable isotopic labeling using gas chromatography coupled to mass spectrometry (GC-MS). Neurotransmitter and amino acid content was quantified via high performance liquid chromatography (HPLC) and protein expression was investigated by Western blot assay. Cell lines carrying mutations in either amyloid precursor protein (APP) or presenilin1 (PSEN-1) were used as AD models and were compared to a control cell line of the same genetic background. AD astrocytes displayed a reduced oxidative GABA metabolism mediated by a decreased uptake capacity of GABA, as GABA transporter 3 (GAT3) was downregulated in AD astrocytes compared to the controls. Interestingly, the carbon backbone of GABA in AD astrocytes was utilized to a larger extent to support glutamine synthesis compared to control astrocytes. The results strongly indicate alterations in GABA uptake and metabolism in AD astrocytes linked to reduced GABA transporter expression, hereby contributing further to neurotransmitter disturbances.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Regulação para Baixo/fisiologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Mutação , Presenilina-1/genética
17.
Glia ; 69(1): 28-41, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32506554

RESUMO

The mammalian brain consists of 80% water, which is continuously shifted between different compartments and cellular structures by mechanisms that are, to a large extent, unresolved. Aquaporin 4 (AQP4) is abundantly expressed in glia and ependymal cells of the mammalian brain and has been proposed to act as a gatekeeper for brain water dynamics, predominantly based on studies utilizing AQP4-deficient mice. However, these mice have a range of secondary effects due to the gene deletion. An efficient and selective AQP4 inhibitor has thus been sorely needed to validate the results obtained in the AQP4-/- mice to quantify the contribution of AQP4 to brain fluid dynamics. In AQP4-expressing Xenopus laevis oocytes monitored by a high-resolution volume recording system, we here demonstrate that the compound TGN-020 is such a selective AQP4 inhibitor. TGN-020 targets the tested species of AQP4 with an IC50 of ~3.5 µM, but displays no inhibitory effect on the other AQPs (AQP1-AQP9). With this tool, we employed rat hippocampal slices and ion-sensitive microelectrodes to determine the role of AQP4 in glia cell swelling following neuronal activity. TGN-020-mediated inhibition of AQP4 did not prevent stimulus-induced extracellular space shrinkage, nor did it slow clearance of the activity-evoked K+ transient. These data, obtained with a verified isoform-selective AQP4 inhibitor, indicate that AQP4 is not required for the astrocytic contribution to the K+ clearance or the associated extracellular space shrinkage.


Assuntos
Neuroglia , Animais , Aquaporina 4/genética , Aquaporinas , Astrócitos/metabolismo , Edema , Camundongos , Neuroglia/metabolismo , Isoformas de Proteínas , Ratos , Água/metabolismo
18.
Neurobiol Dis ; 148: 105198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242587

RESUMO

Alzheimer's disease (AD) leads to cerebral accumulation of insoluble amyloid-ß plaques causing synaptic dysfunction and neuronal death. Neurons rely on astrocyte-derived glutamine for replenishment of the amino acid neurotransmitter pools. Perturbations of astrocyte glutamine synthesis have been described in AD, but whether this functionally affects neuronal neurotransmitter synthesis is not known. Since the synthesis and recycling of neurotransmitter glutamate and GABA are intimately coupled to cellular metabolism, the aim of this study was to provide a functional investigation of neuronal and astrocytic energy and neurotransmitter metabolism in AD. To achieve this, we incubated acutely isolated cerebral cortical and hippocampal slices from 8-month-old female 5xFAD mice, in the presence of 13C isotopically enriched substrates, with subsequent gas chromatography-mass spectrometry (GC-MS) analysis. A prominent neuronal hypometabolism of [U-13C]glucose was observed in the hippocampal slices of the 5xFAD mice. Investigating astrocyte metabolism, using [1,2-13C]acetate, revealed a marked reduction in glutamine synthesis, which directly hampered neuronal synthesis of GABA. This was supported by an increased metabolism of exogenously supplied [U-13C]glutamine, suggesting a neuronal metabolic compensation of the reduced astrocytic glutamine supply. In contrast, astrocytic metabolism of [U-13C]GABA was reduced, whereas [U-13C]glutamate metabolism was unaffected. Finally, astrocyte de novo synthesis of glutamate and glutamine was hampered, whereas the enzymatic capacity of glutamine synthetase for ammonia fixation was maintained. Collectively, we demonstrate that deficient astrocyte metabolism leads to reduced glutamine synthesis, directly impairing neuronal GABA synthesis in the 5xFAD brain. These findings suggest that astrocyte metabolic dysfunction may be fundamental for the imbalances of synaptic excitation and inhibition in the AD brain.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/biossíntese , Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Isótopos de Carbono , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Homeostase , Camundongos , Camundongos Transgênicos , Neurotransmissores , Presenilina-1/genética
19.
Scand J Caring Sci ; 35(4): 1187-1195, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33277947

RESUMO

BACKGROUND: Patients with minor stroke experience some of the same issues as patients experiencing stroke of increased severity such as fatigue, anxiety and cognitive symptoms. It is current practice that patients with minor stroke receive accelerated treatment and care, yet studies indicate that patients find it difficult to return to their everyday lives after being discharged. We aimed to explore how patients with minor stroke experience the transitional period from the hospital through the first 2-4 weeks after an accelerated care pathway with discharge within 72 hours after stroke onset. METHODS: A qualitative study consisting of semi-structured interviews with 11 patients experiencing first-time stroke 2-4 weeks after discharge. RESULTS: The patients struggled to identify themselves as having had a stroke. They strived to find a new everyday life, but were challenged by existential concerns, mental fatigue and the fear of having a stroke again. Unresolved questions and misunderstandings arose, and the patients expressed a need for health professionals to support them and discuss unclear issues after discharge. Patients searched for others with similar issues in order to find a new sense of self. CONCLUSION: Patients with minor stroke struggle with everyday life after discharge. There is a need for support after discharge from healthcare professionals with specialised knowledge of stroke. Patients also requested an opportunity to meet other patients with minor stroke.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Hospitais , Humanos , Alta do Paciente , Pesquisa Qualitativa
20.
Mol Brain ; 13(1): 125, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928252

RESUMO

Frontotemporal dementia (FTD) is amongst the most prevalent early onset dementias and even though it is clinically, pathologically and genetically heterogeneous, a crucial involvement of metabolic perturbations in FTD pathology is being recognized. However, changes in metabolism at the cellular level, implicated in FTD and in neurodegeneration in general, are still poorly understood. Here we generate induced human pluripotent stem cells (hiPSCs) from patients carrying mutations in CHMP2B (FTD3) and isogenic controls generated via CRISPR/Cas9 gene editing with subsequent neuronal and glial differentiation and characterization. FTD3 neurons show a dysregulation of glutamate-glutamine related metabolic pathways mapped by 13C-labelling coupled to mass spectrometry. FTD3 astrocytes show increased uptake of glutamate whilst glutamate metabolism is largely maintained. Using quantitative proteomics and live-cell metabolic analyses, we elucidate molecular determinants and functional alterations of neuronal and glial energy metabolism in FTD3. Importantly, correction of the mutations rescues such pathological phenotypes. Notably, these findings implicate dysregulation of key enzymes crucial for glutamate-glutamine homeostasis in FTD3 pathogenesis which may underlie vulnerability to neurodegeneration. Neurons derived from human induced pluripotent stem cells (hiPSCs) of patients carrying mutations in CHMP2B (FTD3) display major metabolic alterations compared to CRISPR/Cas9 generated isogenic controls. Using quantitative proteomics, 13C-labelling coupled to mass spectrometry metabolic mapping and seahorse analyses, molecular determinants and functional alterations of neuronal and astrocytic energy metabolism in FTD3 were characterized. Our findings implicate dysregulation of glutamate-glutamine homeostasis in FTD3 pathogenesis. In addition, FTD3 neurons recapitulate glucose hypometabolism observed in FTD patient brains. The impaired mitochondria function found here is concordant with disturbed TCA cycle activity and decreased glycolysis in FTD3 neurons. FTD3 neuronal glutamine hypermetabolism is associated with up-regulation of PAG expression and, possibly, ROS production. Distinct compartments of glutamate metabolism can be suggested for the FTD3 neurons. Endogenous glutamate generated from glutamine via PAG may enter the TCA cycle via AAT (left side of neuron) while exogenous glutamate taken up from the extracellular space may be incorporated into the TCA cycle via GDH (right side of the neuron) FTD3 astrocytic glutamate uptake is upregulated whilst glutamate metabolism is largely maintained. Finally, pharmacological reversal of glutamate hypometabolism manifesting from decreased GDH expression should be explored as a novel therapeutic intervention for treating FTD3.


Assuntos
Astrócitos/metabolismo , Demência Frontotemporal/patologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Homeostase , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Neurônios/metabolismo , Aminoácidos/metabolismo , Ciclo do Ácido Cítrico/genética , Metabolismo Energético/genética , Demência Frontotemporal/genética , Regulação da Expressão Gênica , Glicólise/genética , Humanos , Mitocôndrias/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA