Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 16(1): 29, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365790

RESUMO

BACKGROUND: Dietary intake of n-3 polyunsaturated fatty acids (PUFA) may have a protective effect on the development of cardiovascular diseases, diabetes, depression and cancer, while a high intake of n-6 PUFA was often reported to be associated with inflammation-related traits. The effect of PUFAs on health outcomes might be mediated by DNA methylation (DNAm). The aim of our study is to identify the impact of PUFA intake on DNAm in the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort and the Leiden Longevity Study (LLS). RESULTS: DNA methylation levels were measured in whole blood from the population-based KORA FF4 study (N = 1354) and LLS (N = 448), using the Illumina MethylationEPIC BeadChip and Illumina HumanMethylation450 array, respectively. We assessed associations between DNAm and intake of eight and four PUFAs in KORA and LLS, respectively. Where possible, results were meta-analyzed. Below the Bonferroni correction threshold (p < 7.17 × 10-8), we identified two differentially methylated positions (DMPs) associated with PUFA intake in the KORA study. The DMP cg19937480, annotated to gene PRDX1, was positively associated with docosahexaenoic acid (DHA) in model 1 (beta: 2.00 × 10-5, 95%CI: 1.28 × 10-5-2.73 × 10-5, P value: 6.98 × 10-8), while cg05041783, annotated to gene MARK2, was positively associated with docosapentaenoic acid (DPA) in our fully adjusted model (beta: 9.80 × 10-5, 95%CI: 6.25 × 10-5-1.33 × 10-4, P value: 6.75 × 10-8). In the meta-analysis, we identified the CpG site (cg15951061), annotated to gene CDCA7L below Bonferroni correction (1.23 × 10-7) associated with eicosapentaenoic acid (EPA) intake in model 1 (beta: 2.00 × 10-5, 95% CI: 1.27 × 10-5-2.73 × 10-5, P value = 5.99 × 10-8) and we confirmed the association of cg19937480 with DHA in both models 1 and 2 (beta: 2.07 × 10-5, 95% CI: 1.31 × 10-5-2.83 × 10-5, P value = 1.00 × 10-7 and beta: 2.19 × 10-5, 95% CI: 1.41 × 10-5-2.97 × 10-5, P value = 5.91 × 10-8 respectively). CONCLUSIONS: Our study identified three CpG sites associated with PUFA intake. The mechanisms of these sites remain largely unexplored, highlighting the novelty of our findings. Further research is essential to understand the links between CpG site methylation and PUFA outcomes.


Assuntos
Epigenoma , Ácidos Graxos Ômega-3 , Humanos , Metilação de DNA , Ácidos Graxos , Ácidos Docosa-Hexaenoicos , Proteínas Repressoras
2.
Clin Epigenetics ; 15(1): 166, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858220

RESUMO

BACKGROUND: B vitamins such as folate (B9), B6, and B12 are key in one carbon metabolism, which generates methyl donors for DNA methylation. Several studies have linked differential methylation to self-reported intakes of folate and B12, but these estimates can be imprecise, while metabolomic biomarkers can offer an objective assessment of dietary intakes. We explored blood metabolomic biomarkers of folate and vitamins B6 and B12, to carry out epigenome-wide analyses across up to three European cohorts. Associations between self-reported habitual daily B vitamin intakes and 756 metabolites (Metabolon Inc.) were assessed in serum samples from 1064 UK participants from the TwinsUK cohort. The identified B vitamin metabolomic biomarkers were then used in epigenome-wide association tests with fasting blood DNA methylation levels at 430,768 sites from the Infinium HumanMethylation450 BeadChip in blood samples from 2182 European participants from the TwinsUK and KORA cohorts. Candidate signals were explored for metabolite associations with gene expression levels in a subset of the TwinsUK sample (n = 297). Metabolomic biomarker epigenetic associations were also compared with epigenetic associations of self-reported habitual B vitamin intakes in samples from 2294 European participants. RESULTS: Eighteen metabolites were associated with B vitamin intakes after correction for multiple testing (Bonferroni-adj. p < 0.05), of which 7 metabolites were available in both cohorts and tested for epigenome-wide association. Three metabolites - pipecolate (metabolomic biomarker of B6 and folate intakes), pyridoxate (marker of B6 and folate) and docosahexaenoate (DHA, marker of B6) - were associated with 10, 3 and 1 differentially methylated positions (DMPs), respectively. The strongest association was observed between DHA and DMP cg03440556 in the SCD gene (effect = 0.093 ± 0.016, p = 4.07E-09). Pyridoxate, a catabolic product of vitamin B6, was inversely associated with CpG methylation near the SLC1A5 gene promoter region (cg02711608 and cg22304262) and with SLC7A11 (cg06690548), but not with corresponding changes in gene expression levels. The self-reported intake of folate and vitamin B6 had consistent but non-significant associations with the epigenetic signals. CONCLUSION: Metabolomic biomarkers are a valuable approach to investigate the effects of dietary B vitamin intake on the human epigenome.


Assuntos
Complexo Vitamínico B , Humanos , Vitamina B 12 , Epigenoma , Metilação de DNA , Ácido Fólico , Vitamina B 6 , Biomarcadores , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos
3.
Eur J Nutr ; 62(3): 1357-1375, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36571600

RESUMO

PURPOSE: Examining epigenetic patterns is a crucial step in identifying molecular changes of disease pathophysiology, with DNA methylation as the most accessible epigenetic measure. Diet is suggested to affect metabolism and health via epigenetic modifications. Thus, our aim was to explore the association between food consumption and DNA methylation. METHODS: Epigenome-wide association studies were conducted in three cohorts: KORA FF4, TwinsUK, and Leiden Longevity Study, and 37 dietary exposures were evaluated. Food group definition was harmonized across the three cohorts. DNA methylation was measured using Infinium MethylationEPIC BeadChip in KORA and Infinium HumanMethylation450 BeadChip in the Leiden study and the TwinsUK study. Overall, data from 2293 middle-aged men and women were included. A fixed-effects meta-analysis pooled study-specific estimates. The significance threshold was set at 0.05 for false-discovery rate-adjusted p values per food group. RESULTS: We identified significant associations between the methylation level of CpG sites and the consumption of onions and garlic (2), nuts and seeds (18), milk (1), cream (11), plant oils (4), butter (13), and alcoholic beverages (27). The signals targeted genes of metabolic health relevance, for example, GLI1, RPTOR, and DIO1, among others. CONCLUSION: This EWAS is unique with its focus on food groups that are part of a Western diet. Significant findings were mostly related to food groups with a high-fat content.


Assuntos
Epigenoma , Estudo de Associação Genômica Ampla , Masculino , Pessoa de Meia-Idade , Humanos , Feminino , Epigenoma/genética , Ilhas de CpG , Epigênese Genética , Metilação de DNA
4.
Front Nutr ; 10: 1295078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249614

RESUMO

Introduction: Changes in DNA methylation can increase or suppress the expression of health-relevant genes. We investigated for the first time the relationship between habitual food consumption and changes in DNA methylation. Methods: The German KORA FF4 and KORA Fit studies were used to study the change in methylation over a median follow-up of 4 years. Only subjects participating in both surveys and with available dietary and methylation data were included in the analysis (n = 465). DNA methylation was measured using the Infinium MethylationEPIC BeadChip (Illumina), resulting in 735,527 shared CpGs across both studies. Generalized estimating equation models with an interaction term of exposure and time point were used to analyze the association of 34 food groups, folic acid, and two dietary patterns with changes in DNA methylation over time. Results: The results were corrected for genomic inflation. Significant interaction terms indicate different effects between both time points. We observed only a few significant associations between food intake and change in DNA methylation, except for cream and spirit consumption. The annotated genes include CLN3, PROM1, DLEU7, TLL2, and UGT1A10. Discussion: We identified weak associations between food consumption and DNA methylation change. The differential results for cream and spirits, both consumed in low quantities, require replication in independent studies.

5.
Life (Basel) ; 12(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888152

RESUMO

Associations between diet and DNA methylation may vary among subjects with different metabolic states, which can be captured by clustering populations in metabolically homogenous subgroups, called metabotypes. Our aim was to examine the relationship between habitual consumption of various food groups and DNA methylation as well as to test for effect modification by metabotype. A cross-sectional analysis of participants (median age 58 years) of the population-based prospective KORA FF4 study, habitual dietary intake was modeled based on repeated 24-h diet recalls and a food frequency questionnaire. DNA methylation was measured using the Infinium MethylationEPIC BeadChip providing data on >850,000 sites in this epigenome-wide association study (EWAS). Three metabotype clusters were identified using four standard clinical parameters and BMI. Regression models were used to associate diet and DNA methylation, and to test for effect modification. Few significant signals were identified in the basic analysis while many significant signals were observed in models including food group-metabotype interaction terms. Most findings refer to interactions of food intake with metabotype 3, which is the metabotype with the most unfavorable metabolic profile. This research highlights the importance of the metabolic characteristics of subjects when identifying associations between diet and white blood cell DNA methylation in EWAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA