Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Syst Biol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140829

RESUMO

African antelope diversity is a globally unique vestige of a much richer world-wide Pleistocene megafauna. Despite this, the evolutionary processes leading to the prolific radiation of African antelopes are not well understood. Here, we sequenced 145 whole genomes from both subspecies of the waterbuck (Kobus ellipsiprymnus), an African antelope believed to be in the process of speciation. We investigated genetic structure and population divergence and found evidence of a mid-Pleistocene separation on either side of the eastern Great Rift Valley, consistent with vicariance caused by a rain shadow along the so-called 'Kingdon's Line'. However, we also found pervasive evidence of both recent and widespread historical gene flow across the Rift Valley barrier. By inferring the genome-wide landscape of variation among subspecies, we found 14 genomic regions of elevated differentiation, including a locus that may be related to each subspecies' distinctive coat pigmentation pattern. We investigated these regions as candidate speciation islands. However, we observed no significant reduction in gene flow in these regions, nor any indications of selection against hybrids. Altogether, these results suggest a pattern whereby climatically driven vicariance is the most important process driving the African antelope radiation, and suggest that reproductive isolation may not set in until very late in the divergence process. This has a significant impact on taxonomic inference, as many taxa will be in a gray area of ambiguous systematic status, possibly explaining why it has been hard to achieve consensus regarding the species status of many African antelopes. Our analyses demonstrate how population genetics based on low-depth whole genome sequencing can provide new insights that can help resolve how far lineages have gone along the path to speciation.

2.
Nat Commun ; 15(1): 2921, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609362

RESUMO

The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.


Assuntos
Antílopes , Animais , Antílopes/genética , Ecossistema , África Oriental , África Austral , Efeitos Antropogênicos
3.
Curr Biol ; 34(7): 1576-1586.e5, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479386

RESUMO

Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.


Assuntos
Girafas , Animais , Girafas/genética , Ruminantes/genética , Evolução Biológica , Filogenia , Deriva Genética
4.
Genome Biol Evol ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526019

RESUMO

Phylogenomic data provide valuable opportunities for studying evolutionary rates and timescales. These analyses require theoretical and statistical tools based on molecular clocks. We present ClockstaRX, a flexible platform for exploring and testing evolutionary rate signals in phylogenomic data. Here, information about evolutionary rates in branches across gene trees is placed in Euclidean space, allowing data transformation, visualization, and hypothesis testing. ClockstaRX implements formal tests for identifying groups of loci and branches that make a large contribution to patterns of rate variation. This information can then be used to test for drivers of genomic evolutionary rates or to inform models for molecular dating. Drawing on the results of a simulation study, we recommend forms of data exploration and filtering that might be useful prior to molecular-clock analyses.


Assuntos
Evolução Molecular , Modelos Genéticos , Genômica , Genoma , Evolução Biológica , Filogenia
5.
Nat Commun ; 15(1): 172, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172616

RESUMO

Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.


Assuntos
Mamíferos , Humanos , Animais , Suínos , Madagáscar , Filogenia , Porosidade , Filogeografia , Mamíferos/genética
6.
Mol Ecol ; 33(2): e17205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971141

RESUMO

Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.


Assuntos
Metagenômica , Resiliência Psicológica , Humanos , Animais , Recém-Nascido , Evolução Biológica , Genômica , Ruminantes/genética , Variação Genética/genética
7.
Genome Res ; 33(8): 1284-1298, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37714713

RESUMO

Chinese indicine cattle harbor a much higher genetic diversity compared with other domestic cattle, but their genome architecture remains uninvestigated. Using PacBio HiFi sequencing data from 10 Chinese indicine cattle across southern China, we assembled 20 high-quality partially phased genomes and integrated them into a multiassembly graph containing 148.5 Mb (5.6%) of novel sequence. We identified 156,009 high-confidence nonredundant structural variants (SVs) and 206 SV hotspots spanning ∼195 Mb of gene-rich sequence. We detected 34,249 archaic introgressed fragments in Chinese indicine cattle covering 1.93 Gb (73.3%) of the genome. We inferred an average of 3.8%, 3.2%, 1.4%, and 0.5% of introgressed sequence originating, respectively, from banteng-like, kouprey-like, gayal-like, and gaur-like Bos species, as well as 0.6% of unknown origin. Introgression from multiple donors might have contributed to the genetic diversity of Chinese indicine cattle. Altogether, this study highlights the contribution of interspecies introgression to the genomic architecture of an important livestock population and shows how exotic genomic elements can contribute to the genetic variation available for selection.


Assuntos
Bovinos , Ruminantes , Animais , Bovinos/genética , China , Genoma , Genômica , Ruminantes/genética
8.
Mol Ecol Resour ; 23(7): 1604-1619, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37400991

RESUMO

The genome of recently admixed individuals or hybrids has characteristic genetic patterns that can be used to learn about their recent admixture history. One of these are patterns of interancestry heterozygosity, which can be inferred from SNP data from either called genotypes or genotype likelihoods, without the need for information on genomic location. This makes them applicable to a wide range of data that are often used in evolutionary and conservation genomic studies, such as low-depth sequencing mapped to scaffolds and reduced representation sequencing. Here we implement maximum likelihood estimation of interancestry heterozygosity patterns using two complementary models. We furthermore develop apoh (Admixture Pedigrees of Hybrids), a software that uses estimates of paired ancestry proportions to detect recently admixed individuals or hybrids, and to suggest possible admixture pedigrees. It furthermore calculates several hybrid indices that make it easier to identify and rank possible admixture pedigrees that could give rise to the estimated patterns. We implemented apoh both as a command line tool and as a Graphical User Interface that allows the user to automatically and interactively explore, rank and visualize compatible recent admixture pedigrees, and calculate the different summary indices. We validate the performance of the method using admixed family trios from the 1000 Genomes Project. In addition, we show its applicability on identifying recent hybrids from RAD-seq data of Grant's gazelle (Nanger granti and Nanger petersii) and whole genome low-depth data of waterbuck (Kobus ellipsiprymnus) which shows complex admixture of up to four populations.


Assuntos
Genética Populacional , Genoma , Humanos , Linhagem , Genoma/genética , Genótipo , Software
9.
Proc Biol Sci ; 290(1999): 20230538, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37253422

RESUMO

The muskox and reindeer are the only ruminants that have evolved to survive in harsh Arctic environments. However, the genetic basis of this Arctic adaptation remains largely unclear. Here, we compared a de novo assembled muskox genome with reindeer and other ruminant genomes to identify convergent amino acid substitutions, rapidly evolving genes and positively selected genes among the two Arctic ruminants. We found these candidate genes were mainly involved in brown adipose tissue (BAT) thermogenesis and circadian rhythm. Furthermore, by integrating transcriptomic data from goat adipose tissues (white and brown), we demonstrated that muskox and reindeer may have evolved modulating mitochondrion, lipid metabolism and angiogenesis pathways to enhance BAT thermogenesis. In addition, results from co-immunoprecipitation experiments prove that convergent amino acid substitution of the angiogenesis-related gene hypoxia-inducible factor 2alpha (HIF2A), resulting in weakening of its interaction with prolyl hydroxylase domain-containing protein 2 (PHD2), may increase angiogenesis of BAT. Altogether, our work provides new insights into the molecular mechanisms involved in Arctic adaptation.


Assuntos
Ritmo Circadiano , Ruminantes , Termogênese , Animais , Tecido Adiposo Marrom/metabolismo , Cabras , Rena/genética , Ruminantes/genética , Termogênese/genética , Regiões Árticas
10.
PLoS Genet ; 19(2): e1010615, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821549

RESUMO

The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.


Assuntos
Aclimatação , Carneiro Doméstico , Ovinos/genética , Animais , Carneiro Doméstico/genética , Haplótipos/genética , Irã (Geográfico) , Fenótipo
11.
Science ; 379(6634): 840-847, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821675

RESUMO

The annual regrowth of deer antlers provides a valuable model for studying organ regeneration in mammals. We describe a single-cell atlas of antler regrowth. The earliest-stage antler initiators were mesenchymal cells that express the paired related homeobox 1 gene (PRRX1+ mesenchymal cells). We also identified a population of "antler blastema progenitor cells" (ABPCs) that developed from the PRRX1+ mesenchymal cells and directed the antler regeneration process. Cross-species comparisons identified ABPCs in several mammalian blastema. In vivo and in vitro ABPCs displayed strong self-renewal ability and could generate osteochondral lineage cells. Last, we observed a spatially well-structured pattern of cellular and gene expression in antler growth center during the peak growth stage, revealing the cellular mechanisms involved in rapid antler elongation.


Assuntos
Chifres de Veado , Cervos , Células-Tronco Mesenquimais , Regeneração , Animais , Chifres de Veado/citologia , Chifres de Veado/fisiologia , Cervos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Análise de Célula Única , Proteínas de Homeodomínio/metabolismo
12.
Mol Ecol ; 32(8): 1860-1874, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651275

RESUMO

The iconic Cape buffalo has experienced several documented population declines in recent history. These declines have been largely attributed to the late 19th century rinderpest pandemic. However, the effect of the rinderpest pandemic on their genetic diversity remains contentious, and other factors that have potentially affected this diversity include environmental changes during the Pleistocene, range expansions and recent human activity. Motivated by this, we present analyses of whole genome sequencing data from 59 individuals from across the Cape buffalo range to assess present-day levels of genome-wide genetic diversity and what factors have influenced these levels. We found that the Cape buffalo has high average heterozygosity overall (0.40%), with the two southernmost populations having significantly lower heterozygosity levels (0.33% and 0.29%) on par with that of the domesticated water buffalo (0.29%). Interestingly, we found that these lower levels are probably due to recent inbreeding (average fraction of runs of homozygosity 23.7% and 19.9%) rather than factors further back in time during the Pleistocene. Moreover, detailed investigations of recent demographic history show that events across the past three centuries were the main drivers of the exceptional loss of genetic diversity in the southernmost populations, coincident with the onset of colonialism in the southern extreme of the Cape buffalo range. Hence, our results add to the growing body of studies suggesting that multiple recent human-mediated impacts during the colonial period caused massive losses of large mammal abundance in southern Africa.


Assuntos
Genética Populacional , Peste Bovina , Animais , Humanos , África do Sul , Variação Genética , Búfalos/genética , Colonialismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-36494035

RESUMO

The genetic information coded in DNA leads to trait innovation via a gene regulatory network (GRN) in development. Here, we developed a conserved non-coding element interpretation method to integrate multi-omics data into gene regulatory network (CNEReg) to investigate the ruminant multi-chambered stomach innovation. We generated paired expression and chromatin accessibility data during rumen and esophagus development in sheep, and revealed 1601 active ruminant-specific conserved non-coding elements (active-RSCNEs). To interpret the function of these active-RSCNEs, we defined toolkit transcription factors (TTFs) and modeled their regulation on rumen-specific genes via batteries of active-RSCNEs during development. Our developmental GRN revealed 18 TTFs and 313 active-RSCNEs regulating 7 rumen functional modules. Notably, 6 TTFs (OTX1, SOX21, HOXC8, SOX2, TP63, and PPARG), as well as 16 active-RSCNEs, functionally distinguished the rumen from the esophagus. Our study provides a systematic approach to understanding how gene regulation evolves and shapes complex traits by putting evo-devo concepts into practice with developmental multi-omics data.

16.
Glob Chang Biol ; 28(22): 6602-6617, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031712

RESUMO

Processes leading to range contractions and population declines of Arctic megafauna during the late Pleistocene and early Holocene are uncertain, with intense debate on the roles of human hunting, climatic change, and their synergy. Obstacles to a resolution have included an overreliance on correlative rather than process-explicit approaches for inferring drivers of distributional and demographic change. Here, we disentangle the ecological mechanisms and threats that were integral in the decline and extinction of the muskox (Ovibos moschatus) in Eurasia and in its expansion in North America using process-explicit macroecological models. The approach integrates modern and fossil occurrence records, ancient DNA, spatiotemporal reconstructions of past climatic change, species-specific population ecology, and the growth and spread of anatomically modern humans. We show that accurately reconstructing inferences of past demographic changes for muskox over the last 21,000 years require high dispersal abilities, large maximum densities, and a small Allee effect. Analyses of validated process-explicit projections indicate that climatic change was the primary driver of muskox distribution shifts and demographic changes across its previously extensive (circumpolar) range, with populations responding negatively to rapid warming events. Regional analyses show that the range collapse and extinction of the muskox in Europe (~13,000 years ago) was likely caused by humans operating in synergy with climatic warming. In Canada and Greenland, climatic change and human activities probably combined to drive recent population sizes. The impact of past climatic change on the range and extinction dynamics of muskox during the Pleistocene-Holocene transition signals a vulnerability of this species to future increased warming. By better establishing the ecological processes that shaped the distribution of the muskox through space and time, we show that process-explicit macroecological models have important applications for the future conservation and management of this iconic species in a warming Arctic.


Assuntos
DNA Antigo , Ruminantes , Animais , Regiões Árticas , Mudança Climática , Fósseis , Humanos
17.
Zool Res ; 43(4): 634-647, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35838034

RESUMO

As an important evolutionary innovation and unique organ, the rumen has played a crucial role in ruminant adaptation to complex ecological environments. However, the cellular basis of its complex morphology and function remains largely unknown. In this study, we identified eight major cell types from seven representative prenatal and postnatal rumen samples using ~56 600 single-cell transcriptomes. We captured the dynamic changes and high heterogeneity in cellular and molecular profiles before, during, and after the appearance of keratinized stratified squamous epithelium with neatly arranged papillae and functional maturity. Basal cells, keratinocytes, differentiating keratinocytes, terminally differentiated keratinocytes, and special spinous cells provided the cellular basis for rumen epithelium formation. Notably, we obtained clear evidence of two keratinization processes involved in early papillogenesis and papillae keratinization and identified TBX3 as a potential marker gene. Importantly, enriched stratum spinosum cells played crucial roles in volatile fatty acid (VFA) metabolism and immune response. Our results provide a comprehensive transcriptional landscape of rumen development at single-cell resolution, as well as valuable insight into the interactions between dietary metabolism and the rumen.


Assuntos
Rúmen , Transcriptoma , Animais , Dieta/veterinária , Epitélio/metabolismo , Ácidos Graxos Voláteis/metabolismo , Rúmen/metabolismo , Ovinos/genética
18.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35779009

RESUMO

African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000-1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region's importance in African biogeography. We found that immune system-related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.


Assuntos
Resistência à Doença , Doenças dos Suínos , África , África Oriental , Animais , Sequência de Bases , Resistência à Doença/genética , Suínos
19.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35325213

RESUMO

The gene numbers and evolutionary rates of birds were assumed to be much lower than those of mammals, which is in sharp contrast to the huge species number and morphological diversity of birds. It is, therefore, necessary to construct a complete avian genome and analyze its evolution. We constructed a chicken pan-genome from 20 de novo assembled genomes with high sequencing depth, and identified 1,335 protein-coding genes and 3,011 long noncoding RNAs not found in GRCg6a. The majority of these novel genes were detected across most individuals of the examined transcriptomes but were seldomly measured in each of the DNA sequencing data regardless of Illumina or PacBio technology. Furthermore, different from previous pan-genome models, most of these novel genes were overrepresented on chromosomal subtelomeric regions and microchromosomes, surrounded by extremely high proportions of tandem repeats, which strongly blocks DNA sequencing. These hidden genes were proved to be shared by all chicken genomes, included many housekeeping genes, and enriched in immune pathways. Comparative genomics revealed the novel genes had 3-fold elevated substitution rates than known ones, updating the knowledge about evolutionary rates in birds. Our study provides a framework for constructing a better chicken genome, which will contribute toward the understanding of avian evolution and the improvement of poultry breeding.


Assuntos
Galinhas , Genoma , Animais , Galinhas/genética , Genômica , Mamíferos/genética , Análise de Sequência de DNA
20.
Mol Ecol ; 31(6): 1682-1699, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35068013

RESUMO

The harbour seal (Phoca vitulina) is the most widely distributed pinniped, occupying a wide variety of habitats and climatic zones across the Northern Hemisphere. Intriguingly, the harbour seal is also one of the most philopatric seals, raising questions as to how it colonized its current range. To shed light on the origin, remarkable range expansion, population structure and genetic diversity of this species, we used genotyping-by-sequencing to analyse ~13,500 biallelic single nucleotide polymorphisms from 286 individuals sampled from 22 localities across the species' range. Our results point to a Northeast Pacific origin of the harbour seal, colonization of the North Atlantic via the Canadian Arctic, and subsequent stepping-stone range expansions across the North Atlantic from North America to Europe, accompanied by a successive loss of genetic diversity. Our analyses further revealed a deep divergence between modern North Pacific and North Atlantic harbour seals, with finer-scale genetic structure at regional and local scales consistent with strong philopatry. The study provides new insights into the harbour seal's remarkable ability to colonize and adapt to a wide range of habitats. Furthermore, it has implications for current harbour seal subspecies delineations and highlights the need for international and national red lists and management plans to ensure the protection of genetically and demographically isolated populations.


Assuntos
Phoca , Adaptação Fisiológica , Animais , Canadá , Europa (Continente) , Metagenômica , Phoca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA