Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684038

RESUMO

The T-box transcription factor T-bet is known as a master regulator of T-cell response but its role in malignant B cells is not sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with genetic knockout of TBX21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity induced by inflammatory signals provided by the microenvironment, triggered T-bet expression which impacted on promoter proximal and distal chromatin co-accessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling, and a negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of CLL patients. Our study uncovers a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling which has implications for stratification and therapy of CLL patients. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in inflammatory signaling pathways in CLL.

2.
ACS Nano ; 18(3): 2500-2519, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207106

RESUMO

Glioblastoma is a deadly brain tumor for which there is no cure. The presence of glioblastoma stem-like cells (GSCs) contributes to the heterogeneous nature of the disease and makes developing effective therapies challenging. Glioblastoma cells have been shown to influence their environment by releasing biological nanostructures known as extracellular vesicles (EVs). Here, we investigated the role of GSC-derived nanosized EVs (<200 nm) in glioblastoma heterogeneity, plasticity, and aggressiveness, with a particular focus on their protein, metabolite, and fatty acid content. We showed that conditioned medium and small extracellular vesicles (sEVs) derived from cells of one glioblastoma subtype induced transcriptomic and proteomic changes in cells of another subtype. We found that GSC-derived sEVs are enriched in proteins playing a role in the transmembrane transport of amino acids, carboxylic acids, and organic acids, growth factor binding, and metabolites associated with amino acid, carboxylic acid, and sugar metabolism. This suggests a dual role of GSC-derived sEVs in supplying neighboring GSCs with valuable metabolites and proteins responsible for their transport. Moreover, GSC-derived sEVs were enriched in saturated fatty acids, while their respective cells were high in unsaturated fatty acids, supporting that the loading of biological cargos into sEVs is a highly regulated process and that GSC-derived sEVs could be sources of saturated fatty acids for the maintenance of glioblastoma cell metabolism. Interestingly, sEVs isolated from GSCs of the proneural and mesenchymal subtypes are enriched in specific sets of proteins, metabolites, and fatty acids, suggesting a molecular collaboration between transcriptionally different glioblastoma cells. In summary, this study revealed the complexity of GSC-derived sEVs and unveiled their potential contribution to tumor heterogeneity and critical cellular processes commonly deregulated in glioblastoma.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/patologia , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Proteômica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Vesículas Extracelulares/química , Neoplasias Encefálicas/patologia
3.
NPJ Precis Oncol ; 8(1): 19, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273014

RESUMO

Recent advances in the genomics of glioblastoma (GBM) led to the introduction of molecular neuropathology but failed to translate into treatment improvement. This is largely attributed to the genetic and phenotypic heterogeneity of GBM, which are considered the major obstacle to GBM therapy. Here, we use advanced human GBM-like organoid (LEGO: Laboratory Engineered Glioblastoma-like Organoid) models and provide an unprecedented comprehensive characterization of LEGO models using single-cell transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-proteome analysis. We discovered that genetic heterogeneity dictates functional heterogeneity across molecular layers and demonstrates that NF1 mutation drives mesenchymal signature. Most importantly, we found that glycerol lipid reprogramming is a hallmark of GBM, and several targets and drugs were discovered along this line. We also provide a genotype-based drug reference map using LEGO-based drug screen. This study provides new human GBM models and a research path toward effective GBM therapy.

4.
Nat Commun ; 15(1): 51, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168093

RESUMO

Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Multiômica , Medicina de Precisão , Fatores de Transcrição/genética , Sarcoma/genética , Sarcoma/terapia , Sarcoma/diagnóstico , Proteína EWS de Ligação a RNA/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/terapia , Receptores Proteína Tirosina Quinases , Biomarcadores Tumorais/genética , Proteínas de Fusão Oncogênica/genética , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a DNA/genética
5.
NPJ Breast Cancer ; 9(1): 97, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042915

RESUMO

Intratumoral heterogeneity impacts the success or failure of anti-cancer therapies. Here, we investigated the evolution and mechanistic heterogeneity in clonal populations of cell models for estrogen receptor positive breast cancer. To this end, we established barcoded models of luminal breast cancer and rendered them resistant to commonly applied first line endocrine therapies. By isolating single clones from the resistant cell pools and characterizing replicates of individual clones we observed inter- (between cell lines) and intra-tumor (between different clones from the same cell line) heterogeneity. Molecular characterization at RNA and phospho-proteomic levels revealed private clonal activation of the unfolded protein response and respective sensitivity to inhibition of the proteasome, and potentially shared sensitivities for repression of protein kinase C. Our in vitro findings are consistent with tumor-heterogeneity that is observed in breast cancer patients thus highlighting the need to uncover heterogeneity at an individual patient level and to adjust therapies accordingly.

6.
Acta Neuropathol Commun ; 11(1): 177, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936247

RESUMO

Epithelial membrane protein 3 (EMP3) is an N-glycosylated tetraspanin with a putative trafficking function. It is highly expressed in isocitrate dehydrogenase-wild-type glioblastoma (IDH-wt GBM), and its high expression correlates with poor survival. However, the exact trafficking role of EMP3 and how it promotes oncogenic signaling in GBM remain unclear. Here, we show that EMP3 promotes EGFR/CDK2 signaling by regulating the trafficking and enhancing the stability of EGFR. BioID2-based proximity labeling revealed that EMP3 interacts with endocytic proteins involved in the vesicular transport of EGFR. EMP3 knockout (KO) enhances epidermal growth factor (EGF)-induced shuttling of EGFR into RAB7 + late endosomes, thereby promoting EGFR degradation. Increased EGFR degradation is rescued by the RAB7 negative regulator and novel EMP3 interactor TBC1D5. Phosphoproteomic and transcriptomic analyses further showed that EMP3 KO converges into the inhibition of the cyclin-dependent kinase CDK2 and the repression of EGFR-dependent and cell cycle transcriptional programs. Phenotypically, EMP3 KO cells exhibit reduced proliferation rates, blunted mitogenic response to EGF, and increased sensitivity to the pan-kinase inhibitor staurosporine and the EGFR inhibitor osimertinib. Furthermore, EGFR-dependent patient-derived glioblastoma stem cells display a transcriptomic signature consistent with reduced CDK2 activity, as well as increased susceptibility to CDK2 inhibition upon EMP3 knockdown. Lastly, using TCGA data, we showed that GBM tumors with high EMP3 expression have increased total and phosphorylated EGFR levels. Collectively, our findings demonstrate a novel EMP3-dependent mechanism by which EGFR/CDK2 activity is sustained in GBM. Consequently, EMP3's stabilizing effect provides an additional layer of tumor cell resistance against targeted kinase inhibition.


Assuntos
Fator de Crescimento Epidérmico , Glioblastoma , Humanos , Fator de Crescimento Epidérmico/farmacologia , Glioblastoma/patologia , Transdução de Sinais , Receptores ErbB/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Ativadoras de GTPase
7.
J Biol Chem ; 299(9): 105088, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495107

RESUMO

S-acylation is a reversible posttranslational protein modification consisting of attachment of a fatty acid to a cysteine via a thioester bond. Research over the last few years has shown that a variety of different fatty acids, such as palmitic acid (C16:0), stearate (C18:0), or oleate (C18:1), are used in cells to S-acylate proteins. We recently showed that GNAI proteins can be acylated on a single residue, Cys3, with either C16:0 or C18:1, and that the relative proportion of acylation with these fatty acids depends on the level of the respective fatty acid in the cell's environment. This has functional consequences for GNAI proteins, with the identity of the acylating fatty acid affecting the subcellular localization of GNAIs. Unclear is whether this competitive acylation is specific to GNAI proteins or a more general phenomenon in the proteome. We perform here a proteome screen to identify proteins acylated with different fatty acids. We identify 218 proteins acylated with C16:0 and 308 proteins acylated with C18-lipids, thereby uncovering novel targets of acylation. We find that most proteins that can be acylated by C16:0 can also be acylated with C18-fatty acids. For proteins with more than one acylation site, we find that this competitive acylation occurs on each individual cysteine residue. This raises the possibility that the function of many different proteins can be regulated by the lipid environment via differential S-acylation.


Assuntos
Cisteína , Ácido Palmítico , Proteoma , Ácidos Esteáricos , Acilação , Cisteína/metabolismo , Ácido Palmítico/metabolismo , Proteoma/metabolismo , Células HEK293 , Células HeLa , Humanos , Ácidos Esteáricos/metabolismo
8.
J Med Virol ; 95(6): e28850, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37322807

RESUMO

Infection with certain cutaneous human papillomaviruses (HPV), in conjunction with chronic ultraviolet (UV) exposure, are the major cofactors of non-melanoma skin cancer (NMSC), the most frequent cancer type worldwide. Cutaneous squamous cell carcinomas (SCCs) as well as tumors in general represent three-dimensional entities determined by both temporal and spatial constraints. Whole tissue proteomics is a straightforward approach to understand tumorigenesis in better detail, but studies focusing on different progression states toward a dedifferentiated SCC phenotype on a spatial level are rare. Here, we applied an innovative proteomic workflow on formalin-fixed, paraffin-embedded (FFPE) epithelial tumors derived from the preclinical animal model Mastomys coucha. This rodent is naturally infected with its genuine cutaneous papillomavirus and closely mimics skin carcinogenesis in the context of cutaneous HPV infections in humans. We deciphered cellular networks by comparing diverse epithelial tissues with respect to their differentiation level and infection status. Our study reveals novel regulatory proteins and pathways associated with virus-induced tumor initiation and progression of SCCs. This approach provides the basis to better comprehend the multistep process of skin carcinogenesis.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias Cutâneas , Animais , Humanos , Proteômica , Papillomaviridae/genética , Murinae , Queratinócitos , Carcinogênese
9.
iScience ; 26(6): 106864, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37255666

RESUMO

Diffuse large B cell lymphoma (DLBCL) is one of the most common types of aggressive lymphoid malignancies. Here, we explore the contribution of RNA editing to DLBCL pathogenesis. We observed that DNA mutations and RNA editing events are often mutually exclusive, suggesting that tumors can modulate pathway outcomes by altering sequences at either the genomic or the transcriptomic level. RNA editing targets transcripts within known disease-driving pathways such as apoptosis, p53 and NF-κB signaling, as well as the RIG-I-like pathway. In this context, we show that ADAR1-mediated editing within MAVS transcript positively correlates with MAVS protein expression levels, associating with increased interferon/NF-κB signaling and T cell exhaustion. Finally, using targeted RNA base editing tools to restore editing within MAVS 3'UTR in ADAR1-deficient cells, we demonstrate that editing is likely to be causal to an increase in downstream signaling in the absence of activation by canonical nucleic acid receptor sensing.

10.
Sci Adv ; 8(40): eabq4469, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197975

RESUMO

Iron is mostly devoted to the hemoglobinization of erythrocytes for oxygen transport. However, emerging evidence points to a broader role for the metal in hematopoiesis, including the formation of the immune system. Iron availability in mammalian cells is controlled by iron-regulatory protein 1 (IRP1) and IRP2. We report that global disruption of both IRP1 and IRP2 in adult mice impairs neutrophil development and differentiation in the bone marrow, yielding immature neutrophils with abnormally high glycolytic and autophagic activity, resulting in neutropenia. IRPs promote neutrophil differentiation in a cell intrinsic manner by securing cellular iron supply together with transcriptional control of neutropoiesis to facilitate differentiation to fully mature neutrophils. Unlike neutrophils, monocyte count was not affected by IRP and iron deficiency, suggesting a lineage-specific effect of iron on myeloid output. This study unveils the previously unrecognized importance of IRPs and iron metabolism in the formation of a major branch of the innate immune system.


Assuntos
Medula Óssea , Neutrófilos , Animais , Medula Óssea/metabolismo , Hematopoese , Hemoglobinas/metabolismo , Homeostase , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Mamíferos/metabolismo , Camundongos , Neutrófilos/metabolismo , Oxigênio/metabolismo
11.
Science ; 378(6615): eabn5637, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074822

RESUMO

Mammalian cells can generate amino acids through macropinocytosis and lysosomal breakdown of extracellular proteins, which is exploited by cancer cells to grow in nutrient-poor tumors. Through genetic screens in defined nutrient conditions, we characterized LYSET, a transmembrane protein (TMEM251) selectively required when cells consume extracellular proteins. LYSET was found to associate in the Golgi with GlcNAc-1-phosphotransferase, which targets catabolic enzymes to lysosomes through mannose-6-phosphate modification. Without LYSET, GlcNAc-1-phosphotransferase was unstable because of a hydrophilic transmembrane domain. Consequently, LYSET-deficient cells were depleted of lysosomal enzymes and impaired in turnover of macropinocytic and autophagic cargoes. Thus, LYSET represents a core component of the lysosomal enzyme trafficking pathway, underlies the pathomechanism for hereditary lysosomal storage disorders, and may represent a target to suppress metabolic adaptations in cancer.


Assuntos
Complexo de Golgi , Doenças por Armazenamento dos Lisossomos , Lisossomos , Proteínas , Animais , Complexo de Golgi/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Camundongos , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
12.
Nat Commun ; 13(1): 4848, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977928

RESUMO

Mammalian cells can acquire exogenous amino acids through endocytosis and lysosomal catabolism of extracellular proteins. In amino acid-replete environments, nutritional utilization of extracellular proteins is suppressed by the amino acid sensor mechanistic target of rapamycin complex 1 (mTORC1) through an unknown process. Here, we show that mTORC1 blocks lysosomal degradation of extracellular proteins by suppressing V-ATPase-mediated acidification of lysosomes. When mTORC1 is active, peripheral V-ATPase V1 domains reside in the cytosol where they are stabilized by association with the chaperonin TRiC. Consequently, most lysosomes display low catabolic activity. When mTORC1 activity declines, V-ATPase V1 domains move to membrane-integral V-ATPase Vo domains at lysosomes to assemble active proton pumps. The resulting drop in luminal pH increases protease activity and degradation of protein contents throughout the lysosomal population. These results uncover a principle by which cells rapidly respond to changes in their nutrient environment by mobilizing the latent catabolic capacity of lysosomes.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Aminoácidos/metabolismo , Animais , Endocitose , Lisossomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
13.
J Exp Clin Cancer Res ; 41(1): 190, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655310

RESUMO

BACKGROUND: MicroRNAs (miRNAs) and isomiRs play important roles in tumorigenesis as essential regulators of gene expression. 5'isomiRs exhibit a shifted seed sequence compared to the canonical miRNA, resulting in different target spectra and thereby extending the phenotypic impact of the respective common pre-miRNA. However, for most miRNAs, expression and function of 5'isomiRs have not been studied in detail yet. Therefore, this study aims to investigate the functions of miRNAs and their 5'isomiRs. METHODS: The expression of 5'isomiRs was assessed in The Cancer Genome Atlas (TCGA) breast cancer patient dataset. Phenotypic effects of miR-183 overexpression in triple-negative breast cancer (TNBC) cell lines were investigated in vitro and in vivo by quantifying migration, proliferation, tumor growth and metastasis. Direct targeting of E2F1 by miR-183-5p|+2 was validated with a 3'UTR luciferase assay and linked to the phenotypes of isomiR overexpression. RESULTS: TCGA breast cancer patient data indicated that three variants of miR-183-5p are highly expressed and upregulated, namely miR-183-5p|0, miR-183-5p|+1 and miR-183-5p|+2. However, TNBC cell lines displayed reduced proliferation and invasion upon overexpression of pre-miR-183. While invasion was reduced individually by all three isomiRs, proliferation and cell cycle progression were specifically inhibited by overexpression of miR-183-5p|+2. Proteomic analysis revealed reduced expression of E2F target genes upon overexpression of this isomiR, which could be attributed to direct targeting of E2F1, specifically by miR-183-5p|+2. Knockdown of E2F1 partially phenocopied the effect of miR-183-5p|+2 overexpression on cell proliferation and cell cycle. Gene set enrichment analysis of TCGA and METABRIC patient data indicated that the activity of E2F strongly correlated with the expression of miR-183-5p, suggesting transcriptional regulation of the miRNA by a factor of the E2F family. Indeed, in vitro, expression of miR-183-5p was regulated by E2F1. Hence, miR-183-5p|+2 directly targeting E2F1 appears to be part of a negative feedback loop potentially fine-tuning its activity. CONCLUSIONS: This study demonstrates that 5'isomiRs originating from the same arm of the same pre-miRNA (i.e. pre-miR-183-5p) may exhibit different functions and thereby collectively contribute to the same phenotype. Here, one of three isomiRs was shown to counteract expression of the pre-miRNA by negatively regulating a transcriptional activator (i.e. E2F1). We speculate that this might be part of a regulatory mechanism to prevent uncontrolled cell proliferation, which is disabled during cancer progression.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Retroalimentação , Humanos , MicroRNAs/metabolismo , Proteômica , Neoplasias de Mama Triplo Negativas/metabolismo
14.
Methods Mol Biol ; 2499: 43-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696074

RESUMO

A detailed understanding of the sequence preference surrounding phosphorylation sites is essential for deciphering the function of the human phosphoproteome . Whereas the mechanisms for substrate site recognition by kinases are relatively well understood, the selection mechanisms for the corresponding phosphatases pose several obstacles. However, multiple pieces of evidence point towards a role of the amino acid sequence in the direct vicinity of the phosphorylation site for recognition by phosphatase enzymes. Peptide library-based studies for enzymes attaching posttranslational modifications (PTMs) are relatively straight forward to carry out. However, studying enzymes removing PTMs pose a challenge in that libraries with a PTM attached are needed as a starting point. Here, we present our methodology using large synthetic phosphopeptide libraries to study the preferred sequence context of protein phosphatases. The approach, termed "phosphopeptide library dephosphorylation followed by mass spectrometry" (PLDMS), allows for the exact control of phosphorylation site incorporation and the synthetic route is capable of covering several thousand peptides in a single tube reaction. Furthermore, it enables the user to analyze MS data tailored to the needs of a specific library and thereby increase data quality. We therefore expect a wide applicability of this technique for a range of enzymes catalyzing the removal of PTMs.


Assuntos
Fosfopeptídeos , Fosfoproteínas Fosfatases , Humanos , Espectrometria de Massas , Fosfopeptídeos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Especificidade por Substrato
16.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200965

RESUMO

Glycosylation is the most prevalent and varied form of post-translational protein modifications. Protein glycosylation regulates multiple cellular functions, including protein folding, cell adhesion, molecular trafficking and clearance, receptor activation, signal transduction, and endocytosis. In particular, membrane proteins are frequently highly glycosylated, which is both linked to physiological processes and of high relevance in various disease mechanisms. The cellular glycome is increasingly considered to be a therapeutic target. Here we describe a new strategy to compare membrane glycoproteomes, thereby identifying proteins with altered glycan structures and the respective glycosites. The workflow started with an optimized procedure for the digestion of membrane proteins followed by the lectin-based isolation of glycopeptides. Since alterations in the glycan part of a glycopeptide cause mass alterations, analytical size exclusion chromatography was applied to detect these mass shifts. N-glycosidase treatment combined with nanoUPLC-coupled mass spectrometry identified the altered glycoproteins and respective glycosites. The methodology was established using the colon cancer cell line CX1, which was treated with 2-deoxy-glucose-a modulator of N-glycosylation. The described methodology is not restricted to cell culture, as it can also be adapted to tissue samples or body fluids. Altogether, it is a useful module in various experimental settings that target glycan functions.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Polissacarídeos/metabolismo , Proteômica/métodos
17.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34078606

RESUMO

The merozoite surface protein 1 (MSP-1) is the most abundant protein on the surface of the erythrocyte-invading Plasmodium merozoite, the causative agent of malaria. MSP-1 is essential for merozoite formation, entry into and escape from erythrocytes, and is a promising vaccine candidate. Here, we present monomeric and dimeric structures of full-length MSP-1. MSP-1 adopts an unusual fold with a large central cavity. Its fold includes several coiled-coils and shows structural homology to proteins associated with membrane and cytoskeleton interactions. MSP-1 formed dimers through these domains in a concentration-dependent manner. Dimerization is affected by the presence of the erythrocyte cytoskeleton protein spectrin, which may compete for the dimerization interface. Our work provides structural insights into the possible mode of interaction of MSP-1 with erythrocytes and establishes a framework for future investigations into the role of MSP-1 in Plasmodium infection and immunity.


Assuntos
Malária , Proteína 1 de Superfície de Merozoito , Sequência de Aminoácidos , Eritrócitos/metabolismo , Humanos , Malária/metabolismo , Proteína 1 de Superfície de Merozoito/química , Proteína 1 de Superfície de Merozoito/metabolismo , Plasmodium falciparum , Proteínas de Protozoários/química
18.
FASEB J ; 35(7): e21691, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118085

RESUMO

Amyloid ß peptide (Aß) is the major pathogenic molecule in Alzheimer's disease (AD). BACE1 enzyme is essential for the generation of Aß. Deficiency of p38α-MAPK in neurons increases lysosomal degradation of BACE1 and decreases Aß deposition in the brain of APP-transgenic mice. However, the mechanisms mediating effects of p38α-MAPK are largely unknown. In this study, we used APP-transgenic mice and cultured neurons and observed that deletion of p38α-MAPK specifically in neurons decreased phosphorylation of Snapin at serine, increased retrograde transportation of BACE1 in axons and reduced BACE1 at synaptic terminals, which suggests that p38α-MAPK deficiency promotes axonal transportation of BACE1 from its predominant locations, axonal terminals, to lysosomes in the cell body. In vitro kinase assay revealed that p38α-MAPK directly phosphorylates Snapin. By further performing mass spectrometry analysis and site-directed mutagenic experiments in SH-SY5Y cell lines, we identified serine residue 112 as a p38α-MAPK-phosphorylating site on Snapin. Replacement of serine 112 with alanine did abolish p38α-MAPK knockdown-induced reduction of BACE1 activity and protein level, and transportation to lysosomes in SH-SY5Y cells. Taken together, our study suggests that activation of p38α-MAPK phosphorylates Snapin and inhibits the retrograde transportation of BACE1 in axons, which might exaggerate amyloid pathology in AD brain.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Ácido Aspártico Endopeptidases/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Presenilina-1/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Transporte Axonal , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Transporte Vesicular/genética
19.
Dev Cell ; 56(11): 1677-1693.e10, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34038707

RESUMO

Single-cell transcriptomics (scRNA-seq) has revolutionized the understanding of the spatial architecture of tissue structure and function. Advancing the "transcript-centric" view of scRNA-seq analyses is presently restricted by the limited resolution of proteomics and genome-wide techniques to analyze post-translational modifications. Here, by combining spatial cell sorting with transcriptomics and quantitative proteomics/phosphoproteomics, we established the spatially resolved proteome landscape of the liver endothelium, yielding deep mechanistic insight into zonated vascular signaling mechanisms. Phosphorylation of receptor tyrosine kinases was detected preferentially in the central vein area, resulting in an atypical enrichment of tyrosine phosphorylation. Prototypic biological validation identified Tie receptor signaling as a selective and specific regulator of vascular Wnt activity orchestrating angiocrine signaling, thereby controlling hepatocyte function during liver regeneration. Taken together, the study has yielded fundamental insight into the spatial organization of liver endothelial cell signaling. Spatial sorting may be employed as a universally adaptable strategy for multiomic analyses of scRNA-seq-defined cellular (sub)-populations.


Assuntos
Regeneração Hepática/genética , Fígado/crescimento & desenvolvimento , Fosfoproteínas/genética , Transcriptoma/genética , Células Endoteliais/metabolismo , Endotélio/crescimento & desenvolvimento , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Fosforilação/genética , Proteômica/métodos , RNA-Seq , Regeneração/genética , Análise de Célula Única , Via de Sinalização Wnt/genética
20.
iScience ; 24(4): 102389, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33981976

RESUMO

Frameshifted protein sequences elicit tumor-specific T cell-mediated immune responses in microsatellite-unstable (MSI) cancers if presented by HLA class I molecules. However, their expression and presentation are limited by nonsense-mediated RNA decay (NMD). We employed an unbiased immunopeptidomics workflow to analyze MSI HCT-116 cells and identified >10,000 HLA class I-presented peptides including five frameshift-derived InDel neoepitopes. Notably, pharmacological NMD inhibition with 5-azacytidine stabilizes frameshift-bearing transcripts and increases the HLA class I-mediated presentation of InDel neoepitopes. The frameshift mutation underlying one of the identified InDel neoepitopes is highly recurrent in MSI colorectal cancer cell lines and primary patient samples, and immunization with the corresponding neoepitope induces strong CD8+ T cell responses in an HLA-A∗02:01 transgenic mouse model. Our data show directly that pharmacological NMD inhibition augments HLA class I-mediated presentation of immunogenic frameshift-derived InDel neoepitopes thus highlighting the clinical potential of NMD inhibition in anti-cancer immunotherapy strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA