Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dev Orig Health Dis ; 15: e14, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291337

RESUMO

Early life stress (ELS) and a Western diet (WD) promote mood and cardiovascular disorders, however, how these risks interact in disease pathogenesis is unclear. We assessed effects of ELS with or without a subsequent WD on behaviour, cardiometabolic risk factors, and cardiac function/ischaemic tolerance in male mice. Fifty-six new-born male C57BL/6J mice were randomly allocated to a control group (CON) undisturbed before weaning, or to maternal separation (3h/day) and early (postnatal day 17) weaning (MSEW). Mice consumed standard rodent chow (CON, n = 14; MSEW, n = 15) or WD chow (WD, n = 19; MSEW + WD, n = 19) from week 8 to 24. Fasted blood was sampled and open field test and elevated plus maze (EPM) tests undertaken at 7, 15, and 23 weeks of age, with hearts excised at 24 weeks for Langendorff perfusion (evaluating pre- and post-ischaemic function). MSEW alone transiently increased open field activity at 7 weeks; body weight and serum triglycerides at 4 and 7 weeks, respectively; and final blood glucose levels and insulin resistance at 23 weeks. WD increased insulin resistance and body weight gain, the latter potentiated by MSEW. MSEW + WD was anxiogenic, reducing EPM open arm activity vs. WD alone. Although MSEW had modest metabolic effects and did not influence cardiac function or ischaemic tolerance in lean mice, it exacerbated weight gain and anxiogenesis, and improved ischaemic tolerance in WD fed animals. MSEW-induced increases in body weight (obesity) in WD fed animals in the absence of changes in insulin resistance may have protected the hearts of these mice.


Assuntos
Ansiedade , Dieta Ocidental , Camundongos Endogâmicos C57BL , Obesidade , Estresse Psicológico , Animais , Masculino , Camundongos , Dieta Ocidental/efeitos adversos , Obesidade/etiologia , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Ansiedade/etiologia , Resistência à Insulina , Isquemia Miocárdica/etiologia , Privação Materna
2.
Cereb Circ Cogn Behav ; 6: 100225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841148

RESUMO

Introduction: Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a rare genetic condition with a broad phenotypic presentation. This study aims to establish the first Australian cohort of individuals affected by CADASIL (AusCADASIL) and examine its clinical features and longitudinal course, and to investigate neuroimaging and blood biomarkers to assist in early diagnosis and identify disease progression. Methods: Participants will be recruited from six study centres across Australia for an observational study of CADASIL. We aim to recruit 150 participants with diagnosed CADASIL, family history of CADASIL or suspected CADASIL symptoms, and 150 cognitively normal NOTCH3 negative individuals as controls. Participants will complete: 1) online questionnaires on medical and family history, mental health, and wellbeing; 2) neuropsychological evaluation; 3) neurological examination and brain MRI; 4) ocular examination and 5) blood sample donation. Participants will have annual follow-up for 4 years to assess their progression and will be asked to invite a study partner to corroborate their self-reported cognitive and functional abilities.Primary outcomes include cognitive function and neuroimaging abnormalities. Secondary outcomes include investigation of genetics and blood and ocular biomarkers. Data from the cohort will contribute to an international consortium, and cohort participants will be invited to access future treatment/health intervention trials. Discussion: AusCADASIL will be the first study of an Australian cohort of individuals with CADASIL. The study will identify common pathogenic variants in this cohort, and characterise the pattern of clinical presentation and longitudinal progression, including imaging features, blood and ocular biomarkers and cognitive profile.

3.
Front Cardiovasc Med ; 10: 1072042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153459

RESUMO

Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.

4.
Life Sci ; 311(Pt A): 121137, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36349604

RESUMO

AIM: Evolving type 2 diabetes (T2D) may influence locomotion and affective state, promoting metabolic dysfunction. We examined behaviour and neurobiology in a model of T2D, testing for benefits with dietary n-3 polyunsaturated fatty acid (PUFA). METHODS: Male C57Bl/6 mice received vehicle or 75 mg/kg streptozotocin (STZ) and 21 wks of control or Western diets (43 % fat, 40 % carbohydrate, 17 % protein). Sub-sets received dietary α-linolenic acid (ALA; 10 % of fat intake) for 6 wks. Behaviour was examined via open field and sucrose preference tests, and hippocampal and frontal cortex (FC) leptin and dopamine levels and inflammatory signalling assessed. KEY FINDINGS: T2D mice exhibited weight gain (+15 %), hyperglycemia (+35 %), hyperinsulinemia (+60 %) and insulin-resistance (+80 % higher HOMA-IR), together with anxiety-like behaviour (without anhedonia) that appeared independent of body weight and glycemic status. Cortical leptin declined whereas receptor mRNA increased. Supplementation with ALA did not influence metabolic state, while enhancing locomotion and reducing anxiety-like behaviours in healthy but not T2D mice. Hippocampal dopamine was selectively increased by ALA in T2D mice, with a trend to reduced circulating leptin in both groups. Across all groups, anxiety-like behaviour was associated with declining cortical and hippocampal leptin levels and increasing receptor mRNA, while declining dopamine levels were accompanied by decreased dopamine/serotonin receptor transcripts. SIGNIFICANCE: Chronic T2D induced anxiogenesis in mice appears to be independent of metabolic homeostasis but linked to central leptin-resistance, together with disturbed dopamine and serotonin signalling. Despite anxiolytic effects of ALA in healthy mice, no metabolic or behavioural benefits were evident in T2D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Ácido alfa-Linolênico/farmacologia , Leptina , Neurobiologia , Dopamina , Ácidos Graxos , Dieta Ocidental , RNA Mensageiro
5.
J Neurosci Res ; 100(11): 2004-2027, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36059192

RESUMO

Psychosocial stress promotes and links mood and cardiovascular disorders in a sex-specific manner. However, findings in animal models are equivocal, in some cases opposing human dimorphisms. We examined central nervous system (CNS), behavioral, endocrine, cardiac, and hepatic outcomes in male or female C57Bl/6 mice subjected to chronic social stress (56 days of social isolation, with intermittent social confrontation encounters twice daily throughout the final 20 days). Females exhibited distinct physiological and behavioral changes, including relative weight loss, and increases in coronary resistance, hepatic inflammation, and thigmotaxic behavior in the open field. Males evidence reductions in coronary resistance and cardiac ischemic tolerance, with increased circulating and hippocampal monoamine levels and emerging anhedonia. Shared CNS gene responses include reduced hippocampal Maoa and increased Htr1b expression, while unique responses include repression of hypothalamic Ntrk1 and upregulation of cortical Nrf2 and Htr1b in females; and repression of hippocampal Drd1 and hypothalamic Gabra1 and Oprm in males. Declining cardiac stress resistance in males was associated with repression of cardiac leptin levels and metabolic, mitochondrial biogenesis, and anti-inflammatory gene expression. These integrated data reveal distinct biological responses to social stress in males and females, and collectively evidence greater biological disruption or allostatic load in females (consistent with propensities to stress-related mood and cardiovascular disorders in humans). Distinct stress biology, and molecular to organ responses, emphasize the importance of sex-specific mechanisms and potential approaches to stress-dependent disease.


Assuntos
Ansiedade , Leptina , Animais , Ansiedade/psicologia , Comportamento Animal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Estresse Psicológico/psicologia
6.
Eur J Neurosci ; 56(4): 4333-4362, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763309

RESUMO

Stress resilience, and behavioural and cardiovascular impacts of chronic stress, are theorised to involve integrated neuro-endocrine/inflammatory/transmitter/trophin signalling. We tested for this integration, and whether behaviour/emotionality, together with myocardial ischaemic tolerance, are consistently linked to these pathways across diverse conditions in male C57Bl/6 mice. This included Restraint Stress (RS), 1 h restraint/day for 14 days; Chronic Unpredictable Mild Stress (CUMS), seven stressors randomised over 21 days; Social Stress (SS), 35 days social isolation with brief social encounters in final 13 days; and Control conditions (CTRL; un-stressed mice). Behaviour was assessed via open field (OFT) and sucrose preference (SPT) tests, and neurobiology from frontal cortex (FC) and hippocampal transcripts. Endocrine factors, and function and ischaemic tolerance in isolated hearts, were also measured. Model characteristics ranged from no behavioural or myocardial changes with homotypic RS, to increased emotionality and cardiac ischaemic injury (with apparently distinct endocrine/neurobiological profiles) in CUMS and SS models. Highly integrated expression of HPA axis, neuro-inflammatory, BDNF, monoamine, GABA, cannabinoid and opioid signalling genes was confirmed across conditions, and consistent/potentially causal correlations identified for (i) locomotor activity (noradrenaline, ghrelin; FC Crhr1, Tnfrsf1b, Il33, Nfkb1, Maoa, Gabra1; hippocampal Il33); (ii) thigmotaxis (adrenaline, leptin); (iii) anxiety-like behaviour (adrenaline, leptin; FC Tnfrsf1a; hippocampal Il33); (iv) depressive-like behaviour (ghrelin; FC/hippocampal s100a8); and (v) cardiac stress-resistance (noradrenaline, leptin; FC Il33, Tnfrsf1b, Htr1a, Gabra1, Gabrg2; hippocampal Il33, Tnfrsf1a, Maoa, Drd2). Data support highly integrated pathway responses to stress, and consistent adipokine, sympatho-adrenergic, inflammatory and monoamine involvement in mood and myocardial disturbances across diverse conditions.


Assuntos
Antidepressivos , Depressão , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Epinefrina , Grelina , Sistema Hipotálamo-Hipofisário/metabolismo , Interleucina-33/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA