Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(6): e2624, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35404493

RESUMO

Human activities alter ecosystems everywhere, causing rapid biodiversity loss and biotic homogenization. These losses necessitate coordinated conservation actions guided by biodiversity and species distribution spatial data that cover large areas yet have fine-enough resolution to be management-relevant (i.e., ≤5 km). However, most biodiversity products are too coarse for management or are only available for small areas. Furthermore, many maps generated for biodiversity assessment and conservation do not explicitly quantify the inherent tradeoff between resolution and accuracy when predicting biodiversity patterns. Our goals were to generate predictive models of overall breeding bird species richness and species richness of different guilds based on nine functional or life-history-based traits across the conterminous United States at three resolutions (0.5, 2.5, and 5 km) and quantify the tradeoff between resolution and accuracy and, hence, relevance for management of the resulting biodiversity maps. We summarized 18 years of North American Breeding Bird Survey data (1992-2019) and modeled species richness using random forests, including 66 predictor variables (describing climate, vegetation, geomorphology, and anthropogenic conditions), 20 of which we newly derived. Among the three spatial resolutions, the percentage variance explained ranged from 27% to 60% (median = 54%; mean = 57%) for overall species richness and 12% to 87% (median = 61%; mean = 58%) for our different guilds. Overall species richness and guild-specific species richness were best explained at 5-km resolution using ~24 predictor variables based on percentage variance explained, symmetric mean absolute percentage error, and root mean square error values. However, our 2.5-km-resolution maps were almost as accurate and provided more spatially detailed information, which is why we recommend them for most management applications. Our results represent the first consistent, occurrence-based, and nationwide maps of breeding bird richness with a thorough accuracy assessment that are also spatially detailed enough to inform local management decisions. More broadly, our findings highlight the importance of explicitly considering tradeoffs between resolution and accuracy to create management-relevant biodiversity products for large areas.


Assuntos
Aves , Ecossistema , Animais , Biodiversidade , Atividades Humanas , Humanos , Estados Unidos
2.
Ecol Appl ; 32(5): e2597, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35340097

RESUMO

The wildland-urban interface (WUI) is the focus of many important land management issues, such as wildfire, habitat fragmentation, invasive species, and human-wildlife conflicts. Wildfire is an especially critical issue, because housing growth in the WUI increases wildfire ignitions and the number of homes at risk. Identifying the WUI is important for assessing and mitigating impacts of development on wildlands and for protecting homes from natural hazards, but data on housing development for large areas are often coarse. We created new WUI maps for the conterminous United States based on 125 million individual building locations, offering higher spatial precision compared to existing maps based on U.S. census housing data. Building point locations were based on a building footprint data set from Microsoft. We classified WUI across the conterminous United States at 30-m resolution using a circular neighborhood mapping algorithm with a variable radius to determine thresholds of housing density and vegetation cover. We used our maps to (1) determine the total area of the WUI and number of buildings included, (2) assess the sensitivity of WUI area included and spatial pattern of WUI maps to choice of neighborhood size, (3) assess regional differences between building-based WUI maps and census-based WUI maps, and (4) determine how building location accuracy affected WUI map accuracy. Our building-based WUI maps identified 5.6%-18.8% of the conterminous United States as being in the WUI, with larger neighborhoods increasing WUI area but excluding isolated building clusters. Building-based maps identified more WUI area relative to census-based maps for all but the smallest neighborhoods, particularly in the north-central states, and large differences were attributable to high numbers of non-housing structures in rural areas. Overall WUI classification accuracy was 98.0%. For wildfire risk mapping and for general purposes, WUI maps based on the 500-m neighborhood represent the original Federal Register definition of the WUI; these maps include clusters of buildings in and adjacent to wildlands and exclude remote, isolated buildings. Our approach for mapping the WUI offers flexibility and high spatial detail and can be widely applied to take advantage of the growing availability of high-resolution building footprint data sets and classification methods.


Assuntos
Incêndios , Incêndios Florestais , Conservação dos Recursos Naturais/métodos , Ecossistema , Habitação , Humanos , Estados Unidos
3.
Proc Natl Acad Sci U S A ; 115(13): 3314-3319, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531054

RESUMO

The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990-2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Habitação , Urbanização , Incêndios Florestais/estatística & dados numéricos , Humanos , Fatores de Risco , Estados Unidos
4.
Ecol Appl ; 25(1): 160-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26255365

RESUMO

Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions.


Assuntos
Animais Selvagens , Ecossistema , Vertebrados/fisiologia , Agroquímicos , Animais , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Atividades Humanas , Modelos Teóricos , Sudeste dos Estados Unidos , Fatores de Tempo , Urbanização
5.
Proc Natl Acad Sci U S A ; 111(20): 7492-7, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799685

RESUMO

Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura/métodos , Anfíbios , Animais , Biodiversidade , Aves , Carbono/química , Conservação dos Recursos Naturais/economia , Abastecimento de Alimentos , Geografia , Modelos Econométricos , Política Pública , Árvores , Estados Unidos
6.
Proc Natl Acad Sci U S A ; 107(2): 940-5, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080780

RESUMO

Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern "Noah's Ark." Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Habitação/estatística & dados numéricos , Idoso , Condução de Veículo/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Agricultura Florestal/tendências , Habitação/tendências , Humanos , Aposentadoria/estatística & dados numéricos , Estados Unidos , Meio Selvagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA