Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecology ; 105(7): e4328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782017

RESUMO

Since 1968, the Australian Dung Beetle Project has carried out field releases of 43 deliberately introduced dung beetle species for the biological control of livestock dung and dung-breeding pests. Of these, 23 species are known to have become established. For most of these species, sufficient time has elapsed for population expansion to fill the extent of their potential geographic range through both natural and human-assisted dispersal. Consequently, over the last 20 years, extensive efforts have been made to quantify the current distribution of these introduced dung beetles, as well as the seasonal and spatial variation in their activity levels. Much of these data and their associated metadata have remained unpublished, and they have not previously been synthesized into a cohesive dataset. Here, we collate and report data from the three largest dung beetle monitoring projects from 2001 to 2022. Together, these projects encompass data collected from across Australia, and include records for all 23 species of established dung beetles introduced for biocontrol purposes. In total, these data include 22,718 presence records and 213,538 absence records collected during 10,272 sampling events at 546 locations. Most presence records (97%) include abundance data. In total, 1,752,807 dung beetles were identified as part of these data. The distributional occurrence and abundance data can be used to explore questions such as factors influencing dung beetle species distributions, dung beetle biocontrol, and insect-mediated ecosystem services. These data are provided under a CC-BY-NC 4.0 license and users are encouraged to cite this data paper when using the data.


Assuntos
Besouros , Espécies Introduzidas , Besouros/fisiologia , Animais , Austrália , Fatores de Tempo , Distribuição Animal , Dinâmica Populacional , Densidade Demográfica
2.
Nat Commun ; 14(1): 8070, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057312

RESUMO

Dung removal by macrofauna such as dung beetles is an important process for nutrient cycling in pasturelands. Intensification of farming practices generally reduces species and functional diversity of terrestrial invertebrates, which may negatively affect ecosystem services. Here, we investigate the effects of cattle-grazing intensification on dung removal by dung beetles in field experiments replicated in 38 pastures around the world. Within each study site, we measured dung removal in pastures managed with low- and high-intensity regimes to assess between-regime differences in dung beetle diversity and dung removal, whilst also considering climate and regional variations. The impacts of intensification were heterogeneous, either diminishing or increasing dung beetle species richness, functional diversity, and dung removal rates. The effects of beetle diversity on dung removal were more variable across sites than within sites. Dung removal increased with species richness across sites, while functional diversity consistently enhanced dung removal within sites, independently of cattle grazing intensity or climate. Our findings indicate that, despite intensified cattle stocking rates, ecosystem services related to decomposition and nutrient cycling can be maintained when a functionally diverse dung beetle community inhabits the human-modified landscape.


Assuntos
Besouros , Ecossistema , Animais , Bovinos , Biodiversidade , Clima , Fazendas , Fezes
3.
Environ Entomol ; 50(4): 762-780, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33860802

RESUMO

Following the introduction of cattle, exotic dung beetles (Coleoptera: Aphodiidae, Geotrupidae, Scarabaeidae) were imported into the Antipodes (Australia and New Zealand) and North America (primarily the United States) to accelerate the degradation of cattle dung on pastures. The history of dung beetle introductions between the two regions is similar but has not previously been assessed: this is important as new introductions are continuing in the regions. Here, we review these introduction programs, report on their current status, and discuss methodological advances. In doing so, we examine the accidental introduction of exotic (i.e., adventive) species and the contribution of both deliberately introduced and adventive species to endemic dung beetle faunas. Further, we provide a list of pest and parasite species whose populations can be reduced by dung beetle activity. We also identify a combined total of 37 introduced and 47 adventive dung beetle species that have become established in the Antipodes and North America, with exotic species dominating dung beetle assemblages from pasture habitats. Climatic and edaphic matches, the size of founding populations, abiotic and biotic stressors, and the time of year when releases are made are all critical determinants that affect the success of dung beetle introduction programs. Finally, we discuss opportunities, plus the risks and challenges associated with dung beetle introductions. We hope that this review will aid in the success of future introduction programs, either to enhance ecosystem services in areas that they are needed, or potentially to reestablish native species in regions where they have been extirpated.


Assuntos
Besouros , Animais , Bovinos , Ecossistema , Fezes , Nova Zelândia , América do Norte
4.
PeerJ ; 6: e6252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30656070

RESUMO

Understanding the physiological tolerances of ectotherms, such as thermal limits, is important in predicting biotic responses to climate change. However, it is even more important to examine these impacts alongside those from other landscape changes: such as the reduction of native vegetation cover, landscape fragmentation and changes in land use intensity (LUI). Here, we integrate the observed thermal limits of the dominant and ubiquitous meat ant Iridomyrmex purpureus across climate (aridity), land cover and land use gradients spanning 270 km in length and 840 m in altitude across northern New South Wales, Australia. Meat ants were chosen for study as they are ecosystem engineers and changes in their populations may result in a cascade of changes in the populations of other species. When we assessed critical thermal maximum temperatures (CTmax) of meat ants in relation to the environmental gradients we found little influence of climate (aridity) but that CTmax decreased as LUI increased. We found no overall correlation between CTmax and CTmin. We did however find that tolerance to warming was lower for ants sampled from more arid locations. Our findings suggest that as LUI and aridification increase, the physiological resilience of I. purpureus will decline. A reduction in physiological resilience may lead to a reduction in the ecosystem service provision that these populations provide throughout their distribution.

5.
J Insect Physiol ; 59(9): 870-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23806604

RESUMO

Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3°C; CT(max) = 46.1°C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6-57°C (equating to a body temperature of 24.5-43.1°C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed.


Assuntos
Formigas/fisiologia , Comportamento Animal , Mudança Climática , Temperatura Alta , Locomoção , Animais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA