Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 20(4): 20230518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593853

RESUMO

Only a few diurnal animals, such as bumblebees, extend their activity into the time around sunrise and sunset when illumination levels are low. Low light impairs viewing conditions and increases sensory costs, but whether diurnal insects use low light as a cue to make behavioural decisions is uncertain. To investigate how they decide to initiate foraging at these times of day, we observed bumblebee nest-departure behaviours inside a flight net, under naturally changing light conditions. In brighter light bees did not attempt to return to the nest and departed with minimal delay, as expected. In low light the probability of non-departures increased, as a small number of bees attempted to return after spending time on the departure platform. Additionally, in lower illumination bees spent more time on the platform before flying away, up to 68 s. Our results suggest that bees may assess light conditions once outside the colony to inform the decision to depart. These findings give novel insights into how behavioural decisions are made at the start and the end of a foraging day in diurnal animals when the limits of their vision impose additional costs on foraging efficiency.


Assuntos
Abelhas , Comportamento Animal , Luz , Animais , Abelhas/fisiologia
2.
Curr Opin Insect Sci ; 59: 101086, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468044

RESUMO

Flowers present information to their insect visitors in multiple simultaneous sensory modalities. Research has commonly focussed on information presented in visual and olfactory modalities. Recently, focus has shifted towards additional 'invisible' information, and whether information presented in multiple modalities enhances the interaction between flowers and their visitors. In this review, we highlight work that addresses how multimodality influences behaviour, focussing on work conducted on bumblebees (Bombus spp.), which are often used due to both their learning abilities and their ability to use multiple sensory modes to identify and differentiate between flowers. We review the evidence for bumblebees being able to use humidity, electrical potential, surface texture and temperature as additional modalities, and consider how multimodality enhances their performance. We consider mechanisms, including the cross-modal transfer of learning that occurs when bees are able to transfer patterns learnt in one modality to an additional modality without additional learning.


Assuntos
Flores , Aprendizagem , Abelhas , Animais , Temperatura
3.
J Exp Biol ; 226(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37015045

RESUMO

The learning flights and walks of bees, wasps and ants are precisely coordinated movements that enable insects to memorise the visual surroundings of their nest or other significant places such as foraging sites. These movements occur on the first few occasions that an insect leaves its nest. They are of special interest because their discovery in the middle of the 19th century provided perhaps the first evidence that insects can learn and are not solely governed by instinct. Here, we recount the history of research on learning flights from their discovery to the present day. The first studies were conducted by skilled naturalists and then, over the following 50 years, by neuroethologists examining the insects' learning behaviour in the context of experiments on insect navigation and its underlying neural mechanisms. The most important property of these movements is that insects repeatedly fixate their nest and look in other favoured directions, either in a preferred compass direction, such as North, or towards preferred objects close to the nest. Nest facing is accomplished through path integration. Memories of views along a favoured direction can later guide an insect's return to its nest. In some ant species, the favoured direction is adjusted to future foraging needs. These memories can then guide both the outward and homeward legs of a foraging trip. Current studies of central areas of the insect brain indicate what regions implement the behavioural manoeuvres underlying learning flights and the resulting visual memories.


Assuntos
Formigas , Vespas , Abelhas , Animais , Instinto , Comportamento de Retorno ao Território Vital , Voo Animal , Insetos
4.
J Exp Biol ; 226(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995307

RESUMO

The start of a bumblebee's first learning flight from its nest provides an opportunity to examine the bee's learning behaviour during its initial view of the nest's unfamiliar surroundings. Like many other hymenopterans, bumblebees store views of their nest surroundings while facing their nest. We found that a bumblebee's first fixation of the nest is a coordinated manoeuvre in which the insect faces the nest with its body oriented towards a particular visual feature within its surroundings. This conjunction of nest fixation and body orientation is preceded and reached by means of a translational scan during which the bee flies perpendicularly to its preferred body orientation. The utility of the coordinated manoeuvre is apparent during the bees' first return flight after foraging. Bees then adopt a similar preferred body orientation when close to the nest. How does a bee, unacquainted with its surroundings, know when it is facing its nest? A likely answer is through path integration, which gives bees continuously updated information about the current direction of their nest. Path integration also gives bees the possibility to fixate the nest when their body points in a desired direction. The three components of this coordinated manoeuvre are discussed in relation to current understanding of the central complex in the insect brain, noting that nest fixation is egocentric, whereas the preferred body orientation and flight direction that the bee adopts within the visual surroundings of the nest are geocentric.


Assuntos
Voo Animal , Aprendizagem , Abelhas , Animais , Comportamento de Retorno ao Território Vital , Cabeça
5.
Philos Trans R Soc Lond B Biol Sci ; 377(1862): 20210284, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36058248

RESUMO

Bees discriminate between many different colours of flower petals, but it is not well understood how they perceive and learn patterns frequently found in flowers with colourful structures. We used multi-spectral imaging to explore chromatic cues in concentric flower patterns as they are seen through the low-resolution eyes of the honeybee. We find a diversity of colour combinations, which suggests that plants might exploit the sensory capabilities of pollinators, like bees, that learn colours easily. A consistent feature is that the surround of the pattern has a stronger chromatic contrast to the foliage background than the centre. This can potentially facilitate the fast identification of floral objects within colourful scenes when a foraging bee moves through a flower patch. In behavioural experiments we trained and tested bees with three types of concentric patterns. They recognized and discriminated patterns accurately in most tests, relying flexibly on both chromatic and spatial cues. Only rarely, depending on the training stimulus, chromatic cues determined their choices whilst pattern cues were ignored. The variability of floral designs and the bees' flexibility in recalling colour and spatial information suggest a role for colour vision in pattern processing. Implications for the signalling strategies of flowers are discussed. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.


Assuntos
Flores , Polinização , Animais , Abelhas , Cor , Condicionamento Clássico , Sinais (Psicologia) , Flores/fisiologia , Polinização/fisiologia
6.
Philos Trans R Soc Lond B Biol Sci ; 377(1862): 20210273, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36058249

RESUMO

Colour vision allows animals to use the information contained in the spectrum of light to control important behavioural decisions such as selection of habitats, food or mates. Among arthropods, the largest animal phylum, we find completely colour-blind species as well as species with up to 40 different opsin genes or more than 10 spectral types of photoreceptors, we find a large diversity of optical methods shaping spectral sensitivity, we find eyes with different colour vision systems looking into the dorsal and ventral hemisphere, and species in which males and females see the world in different colours. The behavioural use of colour vision shows an equally astonishing diversity. Only the neural mechanisms underlying this sensory ability seems surprisingly conserved-not only within the phylum, but even between arthropods and the other well-studied phylum, chordates. The papers in this special issue allow a glimpse into the colourful world of arthropod colour vision, and besides giving an overview this introduction highlights how much more research is needed to fill in the many missing pieces of this large puzzle. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.


Assuntos
Artrópodes , Visão de Cores , Animais , Artrópodes/genética , Percepção de Cores/genética , Visão de Cores/genética , Ecologia , Olho
7.
Curr Biol ; 32(2): R81-R84, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35077694

RESUMO

Homing insects can use direction and distance information that is updated but also stored in their path integration mechanism. Two studies now demonstrate how both pieces of information are represented in a vector memory that is susceptible to cold-induced anaesthesia.


Assuntos
Insetos , Animais
8.
Front Physiol ; 12: 697886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955870

RESUMO

Gaze direction is closely coupled with body movement in insects and other animals. If movement patterns interfere with the acquisition of visual information, insects can actively adjust them to seek relevant cues. Alternatively, where multiple visual cues are available, an insect's movements may influence how it perceives a scene. We show that the way a foraging bumblebee approaches a floral pattern could determine what it learns about the pattern. When trained to vertical bicoloured patterns, bumblebees consistently approached from below centre in order to land in the centre of the target where the reward was located. In subsequent tests, the bees preferred the colour of the lower half of the pattern that they predominantly faced during the approach and landing sequence. A predicted change of learning outcomes occurred when the contrast line was moved up or down off-centre: learned preferences again reflected relative frontal exposure to each colour during the approach, independent of the overall ratio of colours. This mechanism may underpin learning strategies in both simple and complex visual discriminations, highlighting that morphology and action patterns determines how animals solve sensory learning tasks. The deterministic effect of movement on visual learning may have substantially influenced the evolution of floral signals, particularly where plants depend on fine-scaled movements of pollinators on flowers.

9.
Curr Biol ; 31(18): R1090-R1092, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34582818

RESUMO

Plant secondary metabolites found in floral nectar can affect the behaviour of pollinating insects, but how these changes benefit plants directly is little understood. An experimental study with bumblebees shows that recalling a caffeine-enhanced odour memory can increase flower visitation.


Assuntos
Cafeína , Polinização , Animais , Abelhas , Flores , Insetos , Néctar de Plantas
10.
Ecol Evol ; 11(11): 6536-6545, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141238

RESUMO

Foraging on flowers in low light at dusk and dawn comes at an additional cost for insect pollinators with diurnal vision. Nevertheless, some species are known to be frequently active at these times. To explore how early and under which light levels colonies of bumblebees, Bombus terrestris, initiate their foraging activity, we tracked foragers of different body sizes using RFID over 5 consecutive days during warm periods of the flowering season. Bees that left the colony at lower light levels and earlier in the day were larger in size. This result extends the evidence for alloethism in bumblebees and shows that foragers differ in their task specialization depending on body size. By leaving the colony earlier to find and exploit flowers in low light, larger-sized foragers are aided by their more sensitive eyes and can effectively increase their contributions to the colony's food influx. The decision to leave the colony early seems to be further facilitated by knowledge about profitable food resources in specific locations. We observed that experience accrued over many foraging flights determined whether a bee started foraging under lower light levels and earlier in the morning. Larger-sized bees were not more experienced than smaller-sized bees, confirming earlier observations of wide size ranges among active foragers. Overall, we found that most foragers left at higher light levels when they could see well and fly faster. Nevertheless, a small proportion of foragers left the colony shortly after the onset of dawn when light levels were below 10 lux. Our observations suggest that bumblebee colonies have the potential to balance the benefits of deploying large-sized or experienced foragers during dawn against the risks and costs of foraging under low light by regulating the onset of their activity at different stages of the colony's life cycle and in changing environmental conditions.

11.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34161560

RESUMO

Floral humidity, a region of elevated humidity in the headspace of the flower, occurs in many plant species and may add to their multimodal floral displays. So far, the ability to detect and respond to floral humidity cues has been only established for hawkmoths when they locate and extract nectar while hovering in front of some moth-pollinated flowers. To test whether floral humidity can be used by other more widespread generalist pollinators, we designed artificial flowers that presented biologically relevant levels of humidity similar to those shown by flowering plants. Bumblebees showed a spontaneous preference for flowers that produced higher floral humidity. Furthermore, learning experiments showed that bumblebees are able to use differences in floral humidity to distinguish between rewarding and non-rewarding flowers. Our results indicate that bumblebees are sensitive to different levels of floral humidity. In this way floral humidity can add to the information provided by flowers and could impact pollinator behaviour more significantly than previously thought.


Assuntos
Mariposas , Polinização , Animais , Abelhas , Flores , Umidade , Néctar de Plantas
12.
Curr Biol ; 31(5): 1058-1064.e3, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33373638

RESUMO

Honeybees1 and bumblebees2 perform learning flights when leaving a newly discovered flower. During these flights, bees spend a portion of the time turning back to face the flower when they can memorize views of the flower and its surroundings. In honeybees, learning flights become longer when the reward offered by a flower is increased.3 We show here that bumblebees behave in a similar way, and we add that bumblebees face an artificial flower more when the concentration of the sucrose solution that the flower provides is higher. The surprising finding is that a bee's size determines what a bumblebee regards as a "low" or "high" concentration and so affects its learning behavior. The larger bees in a sample of foragers only enhance their flower facing when the sucrose concentration is in the upper range of the flowers that are naturally available to bees.4 In contrast, smaller bees invest the same effort in facing flowers whether the concentration is high or low, but their effort is less than that of larger bees. The way in which different-sized bees distribute their effort when learning about flowers parallels the foraging behavior of a colony. Large bumblebees5,6 are able to carry larger loads and explore further from the nest than smaller ones.7 Small ones with a smaller flight range and carrying capacity cannot afford to be as selective and so accept a wider range of flowers. VIDEO ABSTRACT.


Assuntos
Flores , Aprendizagem , Animais , Abelhas , Comportamento Alimentar , Sacarose
13.
Arthropod Plant Interact ; 14(2): 193-206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32215113

RESUMO

Floral guides are signal patterns that lead pollinators to floral rewards after they have located the flower, and increase foraging efficiency and pollen transfer. Patterns of several floral signalling modalities, particularly colour patterns, have been identified as being able to function as floral guides. Floral temperature frequently shows patterns that can be used by bumblebees for locating and recognising the flower, but whether these temperature patterns can function as a floral guide has not been explored. Furthermore, how combined patterns (using multiple signalling modalities) affect floral guide function has only been investigated in a few modality combinations. We assessed how artificial flowers induce behaviours in bumblebees when rewards are indicated by unimodal temperature patterns, unimodal colour patterns or multimodal combinations of these. Bees visiting flowers with unimodal temperature patterns showed an increased probability of finding rewards and increased learning of reward location, compared to bees visiting flowers without patterns. However, flowers with contrasting unimodal colour patterns showed further guide-related behavioural changes in addition to these, such as reduced reward search times and attraction to the rewarding feeder without learning. This shows that temperature patterns alone can function as a floral guide, but with reduced efficiency. When temperature patterns were added to colour patterns, bees showed similar improvements in learning reward location and reducing their number of failed visits in addition to the responses seen to colour patterns. This demonstrates that temperature pattern guides can have beneficial effects on flower handling both when alone or alongside colour patterns.

14.
Front Plant Sci ; 11: 249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211004

RESUMO

The area of space immediately around the floral display is likely to have an increased level of humidity relative to the environment around it, due to both nectar evaporation and floral transpiration. This increased level of floral humidity could act as a close-distance cue for pollinators or influence thermoregulation, pollen viability and infection of flowers by fungal pathogens. However, with a few exceptions, not much is known about the patterns of floral humidity in flowering plants or the physiological traits that result in its generation. We conducted a survey of 42 radially symmetrical flower species (representing 21 widely spread families) under controlled conditions. Humidity was measured using a novel robot arm technique that allowed us to take measurements along transects across and above the floral surface. The intensity of floral humidity was found to vary between different flower species. Thirty of the species we surveyed presented levels of humidity exceeding a control comparable to background humidity levels, while twelve species did not. Patterns of floral humidity also differed across species. Nevertheless, floral humidity tended to be highest near the center of the flower, and decreased logarithmically with increasing distance above the flower, normally declining to background levels within 30 mm. It remains unclear how physiological traits influence the diversity of floral humidity discovered in this survey, but floral shape seems to also influence floral humidity. These results demonstrate that floral humidity may occur in a wide range of species and that there might be greater level of diversity and complexity in this floral trait than previously known.

16.
Front Physiol ; 9: 1038, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108522

RESUMO

Flying bees make extensive use of optic flow: the apparent motion in the visual scene generated by their own movement. Much of what is known about bees' visually-guided flight comes from experiments employing real physical objects, which constrains the types of cues that can be presented. Here we implement a virtual reality system allowing us to create the visual illusion of objects in 3D space. We trained bumblebees, Bombus ignitus, to feed from a static target displayed on the floor of a flight arena, and then observed their responses to various interposing virtual objects. When a virtual floor was presented above the physical floor, bees were reluctant to descend through it, indicating that they perceived the virtual floor as a real surface. To reach a target at ground level, they flew through a hole in a virtual surface above the ground, and around an elevated virtual platform, despite receiving no reward for avoiding the virtual obstacles. These behaviors persisted even when the target was made (unrealistically) visible through the obstructing object. Finally, we challenged the bees with physically impossible ambiguous stimuli, which give conflicting motion and occlusion cues. In such cases, they behaved in accordance with the motion information, seemingly ignoring occlusion.

17.
Artigo em Inglês | MEDLINE | ID: mdl-29980840

RESUMO

When leaving the nest for the first time, bees and wasps perform elaborate learning flights, during which the location of the nest is memorised. These flights are characterised by a succession of arcs or loops of increasing radius centred around the nest, with an incremental increase in ground speed, which requires precise control of the flight manoeuvres by the insect. Here, we investigated the role of optic flow cues in the control of learning flights by manipulating spatial texture in the ventral and panoramic visual field. We measured height, lateral displacement relative to the nest and ground speed during learning flights in bumblebees when ventral and panoramic optic flow cues were present or minimised, or features of the ground texture varied in size. Our observations show that ventral optic flow cues were required for the smooth execution of learning flights. We also found that bumblebees adjusted their flight height in response to variations of the visual texture on the ground. However, the presence or absence of panoramic optic flow did not have a substantial effect on flight performance. Our findings suggest that bumblebees mainly rely on optic flow information from the ventral visual field to control their learning flights.


Assuntos
Abelhas , Voo Animal , Aprendizagem , Fluxo Óptico , Animais , Campos Visuais
18.
J Exp Biol ; 221(Pt 4)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29361597

RESUMO

On leaving a significant place to which they will return, bees and wasps perform learning flights to acquire visual information to guide them back. The flights are set in different contexts, such as from their nest or a flower, which are functionally and visually different. The permanent and inconspicuous nest hole of a bumblebee worker is locatable primarily through nearby visual features, whereas a more transient flower advertises itself by its colour and shape. We compared the learning flights of bumblebees leaving their nest or a flower in an experimental situation in which the nest hole, flower and their surroundings were visually similar. Consequently, differences in learning flights could be attributed to the bee's internal state when leaving the nest or flower rather than to the visual scene. Flights at the flower were a quarter as long as those at the nest and more focused on the flower than its surroundings. Flights at the nest covered a larger area with the bees surveying a wider range of directions. For the initial third of the learning flight, bees kept within about 5 cm of the flower and nest hole, and tended to face and fixate the nest, flower and nearby visual features. The pattern of these fixations varied between nest and flower, and these differences were reflected in the bees' return flights to the nest and flower. Together, these findings suggest that learning flights are tuned to the bees' inherent expectations of the visual and functional properties of nests and flowers.


Assuntos
Abelhas/fisiologia , Voo Animal , Flores , Animais , Aprendizagem , Orientação Espacial
19.
Naturwissenschaften ; 105(1-2): 8, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29294192

RESUMO

The spontaneous occurrence of colour preferences without learning has been demonstrated in several insect species; however, the underlying mechanisms are still not understood. Here, we use a comparative approach to investigate spontaneous and learned colour preferences in foraging bees of two tropical and one temperate species. We hypothesised that tropical bees utilise different sets of plants and therefore might differ in their spontaneous colour preferences. We tested colour-naive bees and foragers from colonies that had been enclosed in large flight cages for a long time. Bees were shortly trained with triplets of neutral, UV-grey stimuli placed randomly at eight locations on a black training disk to induce foraging motivation. During unrewarded tests, the bees' responses to eight colours were video-recorded. Bees explored all colours and displayed an overall preference for colours dominated by long or short wavelengths, rather than a single colour stimulus. Naive Apis cerana and Bombus terrestris showed similar choices. Both inspected long-wavelength stimuli more than short-wavelength stimuli, whilst responses of the tropical stingless bee Tetragonula iridipennis differed, suggesting that resource partitioning could be a determinant of spontaneous colour preferences. Reward on an unsaturated yellow colour shifted the bees' preference curves as predicted, which is in line with previous findings that brief colour experience overrides the expression of spontaneous preferences. We conclude that rather than determining foraging behaviour in inflexible ways, spontaneous colour preferences vary depending on experimental settings and reflect potential biases in mechanisms of learning and decision-making in pollinating insects.


Assuntos
Abelhas/fisiologia , Comportamento de Escolha/fisiologia , Cor , Flores/fisiologia , Animais , Aprendizagem , Especificidade da Espécie , Clima Tropical , Raios Ultravioleta
20.
R Soc Open Sci ; 5(12): 181281, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30662737

RESUMO

Infrared (IR) thermography, where temperature measurements are made with IR cameras, has proven to be a very useful and widely used tool in biological science. Several thermography parameters are critical to the proper operation of thermal cameras and the accuracy of measurements, and these must usually be provided to the camera. Failure to account for these parameters may lead to less accurate measurements. Furthermore, the failure to provide information of parameter choices in reports may compromise appraisal of accuracy and replicate studies. In this review, we investigate how well biologists report thermography parameters. This is done through a systematic review of biological thermography literature that included articles published between years 2007 and 2017. We found that in primary biological thermography papers, which make some kind of quantitative temperature measurement, 48% fail to report values used for emissivity (an object's capacity to emit thermal radiation relative to a black body radiator), which is the minimum level of reporting that should take place. This finding highlights the need for life scientists to take into account and report key parameter information when carrying out thermography, in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA