Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(2): 250-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38435708

RESUMO

Methanotrophic bacteria are currently used industrially for the bioconversion of methane-rich natural gas and anaerobic digestion-derived biogas to valuable products. These bacteria may also serve to mitigate the negative effects of climate change by capturing atmospheric greenhouse gases. Several genetic tools have previously been developed for genetic and metabolic engineering of methanotrophs. However, the available tools for use in methanotrophs are significantly underdeveloped compared to many other industrially relevant bacteria, which hinders genetic and metabolic engineering of these biocatalysts. As such, expansion of the methanotroph genetic toolbox is needed to further our understanding of methanotrophy and develop biotechnologies that leverage these unique microbes for mitigation and conversion of methane to valuable products. Here, we determined the copy number of three broad-host-range plasmids in Methylococcus capsulatus Bath and Methylosinus trichosporium OB3b, representing phylogenetically diverse Gammaproteobacterial and Alphaproteobacterial methanotrophs, respectively. Further, we show that the commonly used synthetic Anderson series promoters are functional and exhibit similar relative activity in M. capsulatus and M. trichosporium OB3b, but the synthetic series had limited range. Thus, we mutagenized the native M. capsulatus particulate methane monooxygenase promoter and identified variants with activity that expand the activity range of synthetic, constitutive promoters functional not only in M. capsulatus, but also in Escherichia coli. Collectively, the tools developed here advance the methanotroph genetic engineering toolbox and represent additional synthetic genetic parts that may have broad applicability in Pseudomonadota bacteria.

2.
Trends Biotechnol ; 41(3): 298-300, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36710132

RESUMO

Methanotrophic bacteria are used industrially as catalysts for the bioconversion of methane (CH4) to valuable products. A landmark study by Kalyuzhnaya et al. identified the primary metabolic route for CH4 flux to central metabolic intermediates and alternative fermentative products in an industrially promising methanotroph, leading to a systems-level understanding of methanotrophy.


Assuntos
Ciclo do Carbono , Metano , Metano/metabolismo , Biocatálise , Catálise , Carbono
3.
Methods Mol Biol ; 2489: 421-434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524062

RESUMO

Microbes with the capacity to use methane (CH4) as a carbon source (methanotrophs) have significant potential for the bioconversion of CH4-containing natural gas and anaerobic digestion-derived biogas to high value products. These organisms also play a vital role in the biogeochemical cycling of atmospheric CH4 by serving as the only known biological sink of this gas in terrestrial and aquatic ecosystems. Much is known regarding the enzymes and central metabolic pathways mediating CH4 utilization in these bacteria. However, large fundamental knowledge gaps exist regarding methanotroph physiology and responses to environmental stimuli, primarily due to a lack of efficient molecular tools to probe gene-function relationships. In this chapter, we describe several recently developed genetic tools and optimized genome editing methods that can be used for methanotroph metabolic engineering and to probe metabolic and physiological governing mechanisms in these unique bacteria.


Assuntos
Ecossistema , Edição de Genes , Bactérias/metabolismo , Biocombustíveis , Engenharia Metabólica , Metano/metabolismo
5.
Appl Environ Microbiol ; 87(18): e0088121, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34288705

RESUMO

The ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) enzyme found in plants, algae, and an array of autotrophic bacteria is also encoded by a subset of methanotrophs, but its role in these microbes has largely remained elusive. In this study, we showed that CO2 was requisite for RubisCO-encoding Methylococcus capsulatus strain Bath growth in a bioreactor with continuous influent and effluent gas flow. RNA sequencing identified active transcription of several carboxylating enzymes, including key enzymes of the Calvin and serine cycles, that could mediate CO2 assimilation during cultivation with both CH4 and CO2 as carbon sources. Marker exchange mutagenesis of M. capsulatus Bath genes encoding key enzymes of potential CO2-assimilating metabolic pathways indicated that a complete serine cycle is not required, whereas RubisCO is essential for growth of this bacterium. 13CO2 tracer analysis showed that CH4 and CO2 enter overlapping anaplerotic pathways and implicated RubisCO as the primary enzyme mediating CO2 assimilation in M. capsulatus Bath. Notably, we quantified the relative abundance of 3-phosphoglycerate and ribulose-1,5-bisphosphate 13C isotopes, which supported that RubisCO-produced 3-phosphoglycerate is primarily converted to ribulose-1-5-bisphosphate via the oxidative pentose phosphate pathway in M. capsulatus Bath. Collectively, our data establish that RubisCO and CO2 play essential roles in M. capsulatus Bath metabolism. This study expands the known capacity of methanotrophs to fix CO2 via RubisCO, which may play a more pivotal role in the Earth's biogeochemical carbon cycling and greenhouse gas regulation than previously recognized. Further, M. capsulatus Bath and other CO2-assimilating methanotrophs represent excellent candidates for use in the bioconversion of biogas waste streams that consist of both CH4 and CO2. IMPORTANCE The importance of RubisCO and CO2 in M. capsulatus Bath metabolism is unclear. In this study, we demonstrated that both CO2 and RubisCO are essential for M. capsulatus Bath growth. 13CO2 tracing experiments supported that RubisCO mediates CO2 fixation and that a noncanonical Calvin cycle is active in this organism. Our study provides insights into the expanding knowledge of methanotroph metabolism and implicates dually CH4/CO2-utilizing bacteria as more important players in the biogeochemical carbon cycle than previously appreciated. In addition, M. capsulatus and other methanotrophs with CO2 assimilation capacity represent candidate organisms for the development of biotechnologies to mitigate the two most abundant greenhouse gases, CH4 and CO2.


Assuntos
Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Methylococcus capsulatus/enzimologia , Methylococcus capsulatus/crescimento & desenvolvimento , Ribulose-Bifosfato Carboxilase/metabolismo , Reatores Biológicos
6.
Methods Mol Biol ; 2096: 51-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32720146

RESUMO

Microalgae present promising feedstocks to produce renewable fuel and chemical intermediates, in part due to high storage carbon flux capacity to triacylglycerides or storage carbohydrates upon nutrient deprivation. However, the mechanism(s) governing deprivation-mediated carbon partitioning remain to be fully elucidated, limiting targeted strain engineering strategies in algal biocatalysts. Though genomic and transcriptomic analyses offer key insights into these mechanisms, active post-transcriptional regulatory mechanisms, ubiquitous in many microalgae, necessitate proteomic and post-translational (e.g., phospho- and nitroso-proteomic) analyses to more completely evaluate algal responsiveness to nutrient deprivation. Herein, we describe methods for isolating total algal protein and conducting proteomic, phosphoproteomic, and nitrosoproteomic analyses. We focus on methods deployed for the chlorophyte, Chlorella vulgaris, a model oleaginous alga with high flux to renewable fuel and chemical precursors.


Assuntos
Proteínas de Algas/isolamento & purificação , Proteoma/metabolismo , Proteômica/métodos , Chlorella vulgaris/metabolismo , Fenótipo , Fosfoproteínas/metabolismo
7.
Commun Biol ; 2: 388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667362

RESUMO

Microalgae are promising biocatalysts for applications in sustainable fuel, food, and chemical production. Here, we describe culture collection screening, down-selection, and development of a high-productivity, halophilic, thermotolerant microalga, Picochlorum renovo. This microalga displays a rapid growth rate and high diel biomass productivity (34 g m-2 day-1), with a composition well-suited for downstream processing. P. renovo exhibits broad salinity tolerance (growth at 107.5 g L-1 salinity) and thermotolerance (growth up to 40 °C), beneficial traits for outdoor cultivation. We report complete genome sequencing and analysis, and genetic tool development suitable for expression of transgenes inserted into the nuclear or chloroplast genomes. We further evaluate mechanisms of halotolerance via comparative transcriptomics, identifying novel genes differentially regulated in response to high salinity cultivation. These findings will enable basic science inquiries into control mechanisms governing Picochlorum biology and lay the foundation for development of a microalga with industrially relevant traits as a model photobiology platform.


Assuntos
Clorófitas/metabolismo , Microalgas/metabolismo , Biocatálise , Biomassa , Biotecnologia , Clorófitas/genética , Clorófitas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Engenharia Genética , Genoma de Cloroplastos , Genoma Microbiano , Microbiologia Industrial/métodos , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Processos Fototróficos , Tolerância ao Sal/genética , Termotolerância/genética
8.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30926729

RESUMO

Methanotrophic bacteria play a crucial role in the Earth's biogeochemical cycle and have the potential to be employed in industrial biomanufacturing processes due to their capacity to use natural gas- and biogas-derived methane as a sole carbon and energy source. Advanced gene-editing systems have the potential to enable rapid, high-throughput methanotrophic genetics and biocatalyst development. To this end, we employed a series of broad-host-range expression plasmids to construct a conjugatable clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing system in Methylococcus capsulatus (Bath). Heterologous coexpression of the Streptococcus pyogenes Cas9 endonuclease and a synthetic single guide RNA (gRNA) showed efficient Cas9 DNA targeting and double-stranded DNA (dsDNA) cleavage that resulted in cell death. We demonstrated effective in vivo editing of plasmid DNA using both Cas9 and Cas9D10A nickase to convert green fluorescent protein (GFP)- to blue fluorescent protein (BFP)-expressing cells with 71% efficiency. Further, we successfully introduced a premature stop codon into the soluble methane monooxygenase (sMMO) hydroxylase component-encoding mmoX gene with the Cas9D10A nickase, disrupting sMMO function. These data provide proof of concept for CRISPR/Cas9-mediated gene editing in M. capsulatus Given the broad-host-range replicons and conjugation capability of these CRISPR/Cas9 tools, they have potential utility in other methanotrophs and a wide array of Gram-negative microorganisms.IMPORTANCE In this study, we targeted the development and evaluation of broad-host-range CRISPR/Cas9 gene-editing tools in order to enhance the genetic-engineering capabilities of an industrially relevant methanotrophic biocatalyst. The CRISPR/Cas9 system developed in this study expands the genetic tools available to define molecular mechanisms in methanotrophic bacteria and has the potential to foster advances in the generation of novel biocatalysts to produce biofuels, platform chemicals, and high-value products from natural gas- and biogas-derived methane. Further, due to the broad-host-range applicability, these genetic tools may also enable innovative approaches to overcome the barriers associated with genetically engineering diverse, industrially promising nonmodel microorganisms.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Methylococcus capsulatus/genética , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Códon de Terminação , Desoxirribonuclease I/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Oxigenases/genética , Plasmídeos/genética
9.
Nano Lett ; 19(9): 5829-5835, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30702295

RESUMO

Critical to the success of three-dimensional (3D) printing of living materials with high performance is the development of new ink materials and 3D geometries that favor long-term cell functionality. Here we report the use of freeze-dried live cells as the solid filler to enable a new living material system for direct ink writing of catalytically active microorganisms with tunable densities and various self-supporting porous 3D geometries. Baker's yeast was used as an exemplary live whole-cell biocatalyst, and the printed structures displayed high resolution, large scale, high catalytic activity and long-term viability. An unprecedented high cell loading was achieved, and cell inks showed unique thixotropic behavior. In the presence of glucose, printed bioscaffolds exhibited increased ethanol production compared to bulk counterparts due largely to improved mass transfer through engineered porous structures. The new living materials developed in this work could serve as a versatile platform for process intensification of an array of bioconversion processes utilizing diverse microbial biocatalysts for production of high-value products or bioremediation applications.


Assuntos
Enzimas/química , Impressão Tridimensional , Saccharomyces cerevisiae/química , Alicerces Teciduais/química , Catálise , Etanol/química , Etanol/metabolismo , Tinta , Porosidade
10.
Front Microbiol ; 9: 2610, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429839

RESUMO

Anaerobic digestion (AD) of waste substrates, and renewable biomass and crop residues offers a means to generate energy-rich biogas. However, at present, AD-derived biogas is primarily flared or used for combined heat and power (CHP), in part due to inefficient gas-to-liquid conversion technologies. Methanotrophic bacteria are capable of utilizing methane as a sole carbon and energy source, offering promising potential for biological gas-to-liquid conversion of AD-derived biogas. Here, we report cultivation of three phylogenetically diverse methanotrophic bacteria on biogas streams derived from AD of a series of energy crop residues. Strains maintained comparable central metabolic activity and displayed minimal growth inhibition when cultivated under batch configuration on AD biogas streams relative to pure methane, although metabolite analysis suggested biogas streams increase cellular oxidative stress. In contrast to batch cultivation, growth arrest was observed under continuous cultivation configuration, concurrent with increased biosynthesis and excretion of lactate. We examined the potential for enhanced lactate production via the employ of a pyruvate dehydrogenase mutant strain, ultimately achieving 0.027 g lactate/g DCW/h, the highest reported lactate specific productivity from biogas to date.

11.
J Biol Chem ; 293(29): 11271-11282, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29848552

RESUMO

The genus Salmonella is responsible for many illnesses in humans and other vertebrate animals. We report here that Salmonella enterica serovar Typhimurium harbors three transketolases that support the non-oxidative branch of the pentose phosphate pathway. BLAST analysis identified two genes, STM14_2885 and STM14_2886, that together encode a putative transketolase (TktC) with 46-47% similarity to the known TktA and TktB isoforms. Assessing the mRNA and protein expression for each of the three transketolases, we determined that all are expressed in WT cells and regulated to varying extents by the alternative sigma factor RpoS. Enzyme assays with lysates from WT and transketolase-knockout strains established that TktA is responsible for >88% of the transketolase activity in WT cells. We purified recombinant forms of each isoenzyme to assess the kinetics for canonical transketolase reactions. TktA and TktB had comparable values for Vmax (539-1362 µm NADH consumed/s), Km (80-739 µm), and catalytic efficiency (1.02 × 108-1.06 × 109 m-1/s) for each substrate tested. The recombinant form of TktC had lower Km values (23-120 µm), whereas the Vmax (7.8-16 µm NADH consumed/s) and catalytic efficiency (5.58 × 106 to 6.07 × 108 m-1/s) were 10-100-fold lower. Using a murine model of Salmonella infection, we showed that a strain lacking all three transketolases is avirulent in C57BL/6 mice. These data provide evidence that S Typhimurium possesses three transketolases that contribute to pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Via de Pentose Fosfato , Salmonella typhimurium/metabolismo , Transcetolase/metabolismo , Animais , Proteínas de Bactérias/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos Endogâmicos C57BL , Oxirredução , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Transcetolase/genética , Virulência
12.
Biotechnol Bioeng ; 115(9): 2120-2138, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29750332

RESUMO

The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO2 , and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop "design rules" for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems.


Assuntos
Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Edição de Genes/métodos , Engenharia Metabólica/métodos
15.
Sci Rep ; 8(1): 4753, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540803

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Sci Rep ; 8(1): 2512, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410419

RESUMO

Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20ZR an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20ZR. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.


Assuntos
Metano/metabolismo , Metanol/metabolismo , Methylococcaceae/metabolismo , Acetilcoenzima A/metabolismo , Ciclo do Ácido Cítrico , Simulação por Computador , Redes e Vias Metabólicas , Metaboloma , Methylococcaceae/enzimologia , Methylococcaceae/crescimento & desenvolvimento , Via de Pentose Fosfato
17.
Metab Eng ; 41: 152-158, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28377275

RESUMO

Microbial conversion of methane to high-value bio-based fuels, chemicals, and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO2 lost through pyruvate decarboxylation in the Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. Given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a viable strategy to enhance the economics of an array of biological methane conversion processes.


Assuntos
Aldeído Liases , Proteínas de Bactérias , Biomassa , Lipídeos/biossíntese , Metano/metabolismo , Methylococcaceae , Aldeído Liases/biossíntese , Aldeído Liases/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Lipídeos/genética , Methylococcaceae/genética , Methylococcaceae/crescimento & desenvolvimento
18.
Front Microbiol ; 7: 444, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065993

RESUMO

Redox-based signaling is fundamental to the capacity of bacteria to sense, and respond to, nitrosative and oxidative stress encountered in natural and host environments. The conserved RNA polymerase regulatory protein DksA is a thiol-based sensor of reactive nitrogen and oxygen species. DksA-dependent transcriptional control promotes antinitrosative and antioxidative defenses that contribute to Salmonella pathogenesis. The specific adaptive changes mediated by DksA in response to reactive species, however, have not been elucidated. Herein, we characterize DksA-dependent changes in gene expression in Salmonella enterica experiencing nitrosative stress. Genome-wide expression analysis of wild-type and ΔdksA Salmonella exposed to the nitric oxide ((•)NO) donor DETA NONOate demonstrated (•)NO- and DksA-dependent regulatory control of 427 target genes. Transcriptional changes centered primarily on genes encoding aspects of cellular metabolism. Several antioxidants and oxidoreductases important in redox buffering, (•)NO detoxification, and damage repair were also observed to be up-regulated in an (•)NO- and DksA-dependent manner. Compared to wild-type bacteria, (•)NO-treated ΔdksA Salmonella exhibited a de-repression of genes encoding components of iron homeostasis and failed to activate sulfur assimilation and cysteine biosynthetic operons. As cysteine is integral to efficient antinitrosative and antioxidative defense and repair programs, we further examined the redox-responsive transcriptional control of cysteine biosynthesis by DksA. These investigations revealed that the activation of genes comprising cysteine biosynthesis also occurs in response to hydrogen peroxide, is dependent upon the redox-sensing zinc finger motif of DksA, and requires the transcriptional regulator CysB. Our observations demonstrate that DksA mediates global adaptation to nitrosative stress in Salmonella and provide unique insight into a novel regulatory mechanism by which cysteine biosynthesis is controlled in response to reactive oxygen and nitrogen species.

19.
Sci Rep ; 6: 21585, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902345

RESUMO

Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels.


Assuntos
Proteínas de Bactérias/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/biossíntese , Lactobacillus helveticus/genética , Metano/metabolismo , Methylococcaceae/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Reatores Biológicos , Fermentação , Expressão Gênica , Cinética , L-Lactato Desidrogenase/genética , Lactobacillus helveticus/enzimologia , Engenharia Metabólica , Methylococcaceae/genética , Plasmídeos/química , Plasmídeos/metabolismo , Transformação Bacteriana , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA