Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(11): 6742-6765, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141254

RESUMO

Scavenging can have important consequences for food web dynamics, for example, it may support additional consumer species and affect predation on live prey. Still, few food web models include scavenging. We develop a dynamic model that includes two facultative scavenger species, which we refer to as the predator or scavenger species according to their natural scavenging propensity, as well as live prey, and a carrion pool to show ramifications of scavenging for predation in simple food webs. Our modeling suggests that the presence of scavengers can both increase and decrease predator kill rates and overall predation in model food webs and the impact varies (in magnitude and direction) with context. In particular, we explore the impact of the amount of dynamics (exploitative competition) allowed in the predator, scavenger, and prey populations as well as the direction and magnitude of interference competition between predators and scavengers. One fundamental prediction is that scavengers most likely increase predator kill rates, especially if there are exploitative feedback effects on the prey or carrion resources like is normally observed in natural systems. Scavengers only have minimal effects on predator kill rate when predator, scavenger, and prey abundances are kept constant by management. In such controlled systems, interference competition can greatly affect the interactions in contrast to more natural systems, with an increase in interference competition leading to a decrease in predator kill rate. Our study adds to studies that show that the presence of predators affects scavenger behavior, vital rates, and food web structure, by showing that scavengers impact predator kill rates through multiple mechanisms, and therefore indicating that scavenging and predation patterns are tightly intertwined. We provide a road map to the different theoretical outcomes and their support from different empirical studies on vertebrate guilds to provide guidance in wildlife management.

2.
Glob Chang Biol ; 27(8): 1547-1559, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33448074

RESUMO

To improve understanding and management of the consequences of current rapid environmental change, ecologists advocate using long-term monitoring data series to generate iterative near-term predictions of ecosystem responses. This approach allows scientific evidence to increase rapidly and management strategies to be tailored simultaneously. Iterative near-term forecasting may therefore be particularly useful for adaptive monitoring of ecosystems subjected to rapid climate change. Here, we show how to implement near-term forecasting in the case of a harvested population of rock ptarmigan in high-arctic Svalbard, a region subjected to the largest and most rapid climate change on Earth. We fitted state-space models to ptarmigan counts from point transect distance sampling during 2005-2019 and developed two types of predictions: (1) explanatory predictions to quantify the effect of potential drivers of ptarmigan population dynamics, and (2) anticipatory predictions to assess the ability of candidate models of increasing complexity to forecast next-year population density. Based on the explanatory predictions, we found that a recent increasing trend in the Svalbard rock ptarmigan population can be attributed to major changes in winter climate. Currently, a strong positive effect of increasing average winter temperature on ptarmigan population growth outweighs the negative impacts of other manifestations of climate change such as rain-on-snow events. Moreover, the ptarmigan population may compensate for current harvest levels. Based on the anticipatory predictions, the near-term forecasting ability of the models improved nonlinearly with the length of the time series, but yielded good forecasts even based on a short time series. The inclusion of ecological predictors improved forecasts of sharp changes in next-year population density, demonstrating the value of ecosystem-based monitoring. Overall, our study illustrates the power of integrating near-term forecasting in monitoring systems to aid understanding and management of wildlife populations exposed to rapid climate change. We provide recommendations for how to improve this approach.


Assuntos
Mudança Climática , Ecossistema , Animais , Animais Selvagens , Regiões Árticas , Svalbard
3.
Ecol Appl ; 30(6): e02120, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32159900

RESUMO

Sustainable management of wildlife populations can be aided by building models that both identify current drivers of natural dynamics and provide near-term predictions of future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to decide the purpose and structure of a dynamic state-space model for the population dynamics of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of stakeholders, it was decided that the model should include food web interactions and climatic drivers to provide explanatory predictions. Modeling confirmed observations from stakeholders that climate change impacts Ptarmigan populations negatively through intensified outbreaks of insect defoliators and later onset of winter. Stakeholders also decided that the model should provide anticipatory predictions. The ability to forecast population density ahead of the harvest season was valued by the stakeholders as it provides the management extra time to consider appropriate harvest regulations and communicate with hunters prior to the hunting season. Overall, exploring potential drivers and predicting short-term future states, facilitate collaborative learning and refined data collection, monitoring designs, and management priorities. Our experience from adapting a SFP to a management target with inherently complex dynamics and drivers of environmental change, is that an open, flexible, and iterative process, rather than a rigid step-wise protocol, facilitates rapid learning, trust, and legitimacy.


Assuntos
Mudança Climática , Noruega , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
4.
Ambio ; 49(3): 749-761, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31073984

RESUMO

Rock ptarmigan (Lagopus muta) and willow ptarmigan (L. lagopus) are Arctic birds with a circumpolar distribution but there is limited knowledge about their status and trends across their circumpolar distribution. Here, we compiled information from 90 ptarmigan study sites from 7 Arctic countries, where almost half of the sites are still monitored. Rock ptarmigan showed an overall negative trend on Iceland and Greenland, while Svalbard and Newfoundland had positive trends, and no significant trends in Alaska. For willow ptarmigan, there was a negative trend in mid-Sweden and eastern Russia, while northern Fennoscandia, North America and Newfoundland had no significant trends. Both species displayed some periods with population cycles (short 3-6 years and long 9-12 years), but cyclicity changed through time for both species. We propose that simple, cost-efficient systematic surveys that capture the main feature of ptarmigan population dynamics can form the basis for citizen science efforts in order to fill knowledge gaps for the many regions that lack systematic ptarmigan monitoring programs.


Assuntos
Galliformes , Alaska , Animais , Regiões Árticas , Groenlândia , América do Norte , Dinâmica Populacional , Federação Russa , Svalbard , Suécia
5.
Ecol Evol ; 8(19): 9697-9711, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386568

RESUMO

Variability in biotic interaction strength is an integral part of food web functioning. However, the consequences of the spatial and temporal variability of biotic interactions are poorly known, in particular for predicting species abundance and distribution. The amplitude of rodent population cycles (i.e., peak-phase abundances) has been hypothesized to be determined by vegetation properties in tundra ecosystems. We assessed the spatial and temporal predictability of food and shelter plants effects on peak-phase small rodent abundance during two consecutive rodent population peaks. Rodent abundance was related to both food and shelter biomass during the first peak, and spatial transferability was mostly good. Yet, the temporal transferability of our models to the next population peak was poorer. Plant-rodent interactions are thus temporally variable and likely more complex than simple one-directional (bottom-up) relationships or variably overruled by other biotic interactions and abiotic factors. We propose that parametrizing a more complete set of functional links within food webs across abiotic and biotic contexts would improve transferability of biotic interaction models. Such attempts are currently constrained by the lack of data with replicated estimates of key players in food webs. Enhanced collaboration between researchers whose main research interests lay in different parts of the food web could ameliorate this.

6.
Sci Rep ; 8(1): 15252, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323293

RESUMO

Ecological models have been criticized for a lack of validation of their temporal transferability. Here we answer this call by investigating the temporal transferability of a dynamic state-space model developed to estimate season-dependent biotic and climatic predictors of spatial variability in outbreak abundance of the Norwegian lemming. Modelled summer and winter dynamics parametrized by spatial trapping data from one cyclic outbreak were validated with data from a subsequent outbreak. There was a distinct difference in model transferability between seasons. Summer dynamics had good temporal transferability, displaying ecological models' potential to be temporally transferable. However, the winter dynamics transferred poorly. This discrepancy is likely due to a temporal inconsistency in the ability of the climate predictor (i.e. elevation) to reflect the winter conditions affecting lemmings both directly and indirectly. We conclude that there is an urgent need for data and models that yield better predictions of winter processes, in particular in face of the expected rapid climate change in the Arctic.


Assuntos
Arvicolinae , Ecossistema , Modelos Teóricos , Estações do Ano , Animais , Regiões Árticas/epidemiologia , Arvicolinae/crescimento & desenvolvimento , Mudança Climática , Ecologia , Noruega/epidemiologia , Dinâmica Populacional , Fatores de Tempo
7.
J Anim Ecol ; 83(2): 375-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24128282

RESUMO

Environmental variability, through interannual variation in food availability or climatic variables, is usually detrimental to population growth. It can even select for constancy in key life-history traits, though some exceptions are known. Changes in the level of environmental variability are therefore important to predict population growth or life-history evolution. Recently, several cyclic vole and lemming populations have shown large dynamical changes that might affect the demography or life-histories of rodent predators. Skuas constitute an important case study among rodent predators, because of their strongly saturating breeding productivity (they lay only two eggs) and high degree of site fidelity, in which they differ from nomadic predators raising large broods in good rodent years. This suggests that they cannot capitalize on lemming peaks to the same extent as nomadic predators and might be more vulnerable to collapses of rodent cycles. We develop a model for the population dynamics of long-tailed skuas feeding on lemmings to assess the demographic consequences of such variable and non-stationary prey dynamics, based on data collected in NE Greenland. The model shows that populations of long-tailed skua sustain well changes in lemming dynamics, including temporary collapses (e.g. 10 years). A high floater-to-breeder ratio emerges from rigid territorial behaviour and a long-life expectancy, which buffers the impact of adult abundance's decrease on the population reproductive output. The size of the floater compartment is affected by changes in both mean and coefficient of variation of lemming densities (but not cycle amplitude and periodicity per se). In Greenland, the average lemming density is below the threshold density required for successful breeding (including during normally cyclic periods). Due to Jensen's inequality, skuas therefore benefit from lemming variability; a positive effect of environmental variation. Long-tailed skua populations are strongly adapted to fluctuating lemming populations, an instance of demographic lability in the reproduction rate. They are also little affected by poor lemming periods, if there are enough floaters, or juveniles disperse to neighbouring populations. The status of Greenland skua populations therefore strongly depends upon floater numbers and juvenile movements, which are not known. This reveals a need to intensify colour-ringing efforts on the long-tailed skua at a circumpolar scale.


Assuntos
Arvicolinae/fisiologia , Charadriiformes/fisiologia , Cadeia Alimentar , Comportamento Predatório , Animais , Demografia , Groenlândia , Modelos Biológicos , Dinâmica Populacional , Territorialidade
8.
Biol Lett ; 9(6): 20130802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24173526

RESUMO

Production cycles in birds are proposed as prime cases of indirect interactions in food webs. They are thought to be driven by predators switching from rodents to bird nests in the crash phase of rodent population cycles. Although rodent cycles are geographically widespread and found in different rodent taxa, bird production cycles appear to be most profound in the high Arctic where lemmings dominate. We hypothesized that this may be due to arctic lemmings inducing stronger predator responses than boreal voles. We tested this hypothesis by estimating predation rates in dummy bird nests during a rodent cycle in low-Arctic tundra. Here, the rodent community consists of a spatially variable mix of one lemming (Lemmus lemmus) and two vole species (Myodes rufocanus and Microtus oeconomus) with similar abundances. In consistence with our hypothesis, lemming peak abundances predicted well crash-phase nest predation rates, whereas the vole abundances had no predictive ability. Corvids were found to be the most important nest predators. Lemmings appear to be accessible to the whole predator community which makes them particularly powerful drivers of food web dynamics.


Assuntos
Arvicolinae/fisiologia , Aves/fisiologia , Cadeia Alimentar , Comportamento Predatório , Animais , Regiões Árticas , Ecossistema , Ovos , Comportamento de Nidação/fisiologia , Noruega , Densidade Demográfica , Dinâmica Populacional , Análise de Regressão , Risco , Fatores de Tempo
9.
PLoS One ; 8(5): e63312, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691020

RESUMO

The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets, bird community richness and species-specific abundance are likely to be significantly reduced.


Assuntos
Aves , Água Doce , Salix/crescimento & desenvolvimento , Análise Espacial , Animais , Regiões Árticas , Biodiversidade
10.
Oecologia ; 170(2): 363-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22526937

RESUMO

Lemming cycles are a key process in the functioning of tundra ecosystems. Although it is agreed that trophic interactions are important in causing the cycles, the actual mechanism is disputed. Some researchers attribute a major role to predation by small mustelids such as stoats and least weasels. Here we present a 40-year time series of lemming dynamics from Wrangel Island and show statistically that lemmings do exhibit population cycles in the absence of small mustelids. The observed density fluctuations differed, however, from those observed elsewhere, with long cycles and possibly higher densities of lemmings during the low phase. These differences in the shape of the population cycles may be related to the unique species assemblage of Wrangel Island, where arctic foxes are the only year-round resident lemming predator, and to the high diversity of landscapes, microclimatic conditions, and plants on the island. Both spectral analysis and wavelet analysis show a change in period length from five years in the 1970s to nearly eight years in the 1990s and 2000s. This change in dynamics coincides with reports of dampening or fading out of lemming cycles that have been observed in several regions of the Arctic in recent decades. As in the other cases, the changed lemming dynamics on Wrangel Island may be related to ground icing in winter, which could delay peak years.


Assuntos
Arvicolinae , Reprodução , Animais , Biodiversidade , Feminino , Cadeia Alimentar , Raposas , Ilhas , Masculino , Dinâmica Populacional , Federação Russa , Estações do Ano
11.
Oecologia ; 168(1): 141-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21833646

RESUMO

In patchy habitats, the relationship between animal abundance and cover of a preferred habitat may change with the availability of that habitat, resulting in a functional response in habitat use. Here, we investigate the relationship of two specialized herbivores, willow ptarmigan (Lagopus lagopus) and mountain hare (Lepus timidus), to willows (Salix spp.) in three regions of the shrub tundra zone-northern Norway, northern European Russia and western Siberia. Shrub tundra is a naturally patchy habitat where willow thickets represent a major structural element and are important for herbivores both as food and shelter. Habitat use was quantified using feces counts in a hierarchical spatial design and related to several measures of willow thicket configuration. We document a functional response in the use of willow thickets by ptarmigan, but not by hares. For hares, whose range extends into forested regions, occurrence increased overall with willow cover. The occurrence of willow ptarmigan showed a strong positive relationship to willow cover and a negative relationship to thicket fragmentation in the region with lowest willow cover at landscape scale, where willow growth may be limited by reindeer browsing. In regions with higher cover, in contrast, such relationships were not observed. Differences in predator communities among the regions may contribute to the observed pattern, enhancing the need for cover where willow thickets are scarce. Such region-specific relationships reflecting regional characteristics of the ecosystem highlight the importance of large-scale investigations to understand the relationships of habitat availability and use, which is a critical issue considering that habitat availability changes quickly with climate change and human impact.


Assuntos
Ecossistema , Galliformes , Lebres , Salix , Animais , Comportamento Animal , Herbivoria , Noruega , Dinâmica Populacional , Federação Russa , Sibéria , Especificidade da Espécie
12.
J Anim Ecol ; 78(3): 636-45, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19040680

RESUMO

1. The geographical pattern in Fennoscandian small rodent population dynamics with a southern noncyclic and a northern cyclic region, and with latitudinal gradients in density-dependent structure, cycle period length and spatial synchrony within the northern cyclic region, has been widely publicized and interpreted in the ecological literature. However, the time-series data on which these inferences have been established are relatively short and originate from a specific time period (mostly around 1970-90). Hence, it can be questioned whether the geographical population dynamics patterns are consistent over time (i.e. whether they are stationary). 2. Here we analyse an almost century long (1880-1976) panel of fox bounty time series including 18 counties of Norway, thus spanning the whole range of latitudes of Fennoscandia (i.e. 15 latitudinal degrees). These fox time series mirror the dynamics of their dominant small rodent prey, in particular, with respect to cycle period length and spatial synchrony. 3. While we found some evidence consistent with previous analyses showing a clearly patterned dynamics according to latitude, such patterns were not stationary on a longer time-scale. In particular, we observed a shift from an extensively synchronous (i.e. regionalized) 4-year cycle north of 60 degrees N just after the 'Little Ice Age' (1880-1910) to a diversification of cycle period length (3-5 years) and eventually, partial loss of cyclicity and synchronicity in later periods. Incidents of loss of cyclicity appeared to be preceded by changes in cycle period (i.e. period lengthening and shortening). 4. These results show that the dynamics of Fennoscandian small rodents, and their associated guild of predators, are more prone to change than previously acknowledged.


Assuntos
Raposas/fisiologia , Roedores/fisiologia , Animais , Noruega , Dinâmica Populacional , Fatores de Tempo
13.
Trends Ecol Evol ; 23(2): 79-86, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18191281

RESUMO

During the past two decades population cycles in voles, grouse and insects have been fading out in Europe. Here, we discuss the cause and implication of these changes. Several lines of evidence now point to climate forcing as the general underlying cause. However, how climate interacts with demography to induce regime shifts in population dynamics is likely to differ among species and ecosystems. Herbivores with high-amplitude population cycles, such as voles, lemmings, snowshoe hares and forest Lepidoptera, form the heart of terrestrial food web dynamics. Thus, collapses of these cycles are also expected to imply collapses of important ecosystem functions, such as the pulsed flows of resources and disturbances.


Assuntos
Arvicolinae , Ecossistema , Efeito Estufa , Modelos Biológicos , Animais , Galliformes , Modelos Lineares , Mariposas , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA