Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cartilage ; 14(1): 59-66, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541606

RESUMO

OBJECTIVE: To evaluate the efficacy of fibroblast growth factor-18 (FGF-18) augmentation for improving articular cartilage healing following surgical repair in preclinical (in vivo) animal models. DESIGN: A systematic review was performed evaluating the efficacy of FGF-18 augmentation with cartilage surgery compared with cartilage surgery without FGF-18 augmentation in living animal models. Eligible intervention groups were FGF-18 treatment in conjunction with orthopedic procedures, including microfracture, osteochondral auto/allograft transplantation, and cellular-based repair. Outcome variables were: International Cartilage Repair Society (ICRS) score, modified O'Driscoll histology score, tissue infill score, qualitative histology, and adverse events. Descriptive statistics were recorded and summarized for each included study. RESULTS: In total, 493 studies were identified and 4 studies were included in the final analysis. All studies were randomized controlled trials evaluating in vivo use of recombinant human FGF-18 (rhFGF-18). Animal models included ovine (n = 3) and equine (n = 1), with rhFGF-18 use following microfracture (n = 3) or osteochondral defect repair (n = 1). The rhFGF-18 was delivered via intra-articular injection (n = 2), collagen membrane scaffold (n = 1), or both (n = 1). All studies reported significant, positive improvements in cartilage defect repair with rhFGF-18 compared with controls based on ICRS score (n = 4), modified O'Driscoll score (n = 4), tissue infill (n = 3), and expression of collagen type II (n = 4) (P < 0.05). No adverse events were reported with the intra-articular administration of this growth factor, indicating short-term safety and efficacy of rhFGF-18 in vivo. CONCLUSION: This systematic review provides evidence that rhFGF-18 significantly improves cartilage healing at 6 months postoperatively following microfracture or osteochondral defect repair in preclinical randomized controlled trials.


Assuntos
Cartilagem Articular , Fraturas de Estresse , Animais , Humanos , Ovinos , Cavalos , Cartilagem Articular/cirurgia , Cartilagem Articular/patologia , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Colágeno
2.
J Orthop Res ; 40(3): 553-564, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33934397

RESUMO

Posttraumatic osteoarthritis is a disabling condition impacting the mostly young and active population. In the present study, we investigated the impact of intra-articular sprifermin, a recombinant truncated fibroblast growth factor 18, on the outcome of microfracture treatment, a widely used surgical technique to enhance cartilage healing at the site of injury. For this study, we created a cartilage defect and performed microfracture treatment in fetlock joints of 18 horses, treated joints with one of three doses of sprifermin (10, 30, or 100 µg) or with saline, hyaluronan, and evaluated animals functional and structural outcomes over 24 weeks. For primary outcome measures, we performed histological evaluations and gene expression analysis of aggrecan, collagen types I and II, and cartilage oligomeric matrix protein in three regions of interest. As secondary outcome measures, we examined animals' lameness, performed arthroscopic, radiographic, and computed tomography (CT) scan imaging and gross morphology assessment. We detected the highest treatment benefit following 100 µg sprifermin treatment. The overall histological assessment showed an improvement in the kissing region, and the expression of constitutive genes showed a concentration-dependent enhancement, especially in the peri-lesion area. We detected a significant improvement in lameness scores, arthroscopic evaluations, radiography, and CT scans following sprifermin treatment when results from three dose-treatment groups were combined. Our results demonstrated, for the first time, an enhancement on microfracture outcomes following sprifermin treatment suggesting a cartilage regenerative role and a potential benefit of sprifermin treatment in early cartilage injuries.


Assuntos
Cartilagem Articular , Fraturas de Estresse , Animais , Cartilagem Articular/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Fraturas de Estresse/tratamento farmacológico , Cavalos , Coxeadura Animal/tratamento farmacológico , Coxeadura Animal/metabolismo , Coxeadura Animal/patologia
3.
Curr Opin Rheumatol ; 32(1): 92-101, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31724973

RESUMO

PURPOSE OF REVIEW: Osteoarthritis is a debilitating disease leading to joint degeneration, inflammation, pain, and disability. Despite efforts to develop a disease modifying treatment, the only accepted and available clinical approaches involve palliation. Although many factors contribute to the development of osteoarthritis, the gut microbiome has recently emerged as an important pathogenic factor in osteoarthritis initiation and progression. This review examines the literature to date regarding the link between the gut microbiome and osteoarthritis. RECENT FINDINGS: Studies showing correlations between serum levels of bacterial metabolites and joint degeneration were the first links connecting a dysbiosis of the gut microbiome with osteoarthritis. Further investigations have demonstrated that microbial community shifts induced by antibiotics, a germ-free environment or high-fat are important underlying factors in joint homeostasis and osteoarthritis. It follows that strategies to manipulate the microbiome have demonstrated efficacy in mitigating joint degeneration in osteoarthritis. Moreover, we have observed that dietary supplementation with nutraceuticals that are joint protective may exert their influence via shifts in the gut microbiome. SUMMARY: Although role of the microbiome in osteoarthritis is an area of intense study, no clear mechanism of action has been determined. Increased understanding of how the two factors interact may provide mechanistic insight into osteoarthritis and lead to disease modifying treatments.


Assuntos
Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Inflamação/microbiologia , Osteoartrite/microbiologia , Disbiose/metabolismo , Disbiose/microbiologia , Humanos , Inflamação/metabolismo , Osteoartrite/metabolismo
4.
J Cell Commun Signal ; 11(1): 25-37, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27761803

RESUMO

Mammalian palatogenesis is a complex process involving a temporally and spatially regulated myriad of factors. Together these factors control the 3 vital processes of proliferation, elevation and fusion of the developing palate. In this study, we show for the first time the unequivocally vital role of CCN2 in development of the mammalian palate. We utilized CCN2 knockout (KO) mice and cranial neural crest derived mesenchymal cells from these CCN2 KO mice to investigate the 3 processes crucial to normal palatogenesis. Similar to previously published reports, the absence of CCN2 inhibits proliferation of cells in the palate specifically at the G1/S transition. Absence of CCN2 also inhibited palatal shelf elevation from the vertical to horizontal position. CCN2 KO mesenchymal cells demonstrated deficiencies in adhesion and spreading owing to an inability to activate Rac1 and RhoA. On the contrary, CCN2 KO mesenchymal cells exhibited increased rates of migration compared to WT cells. The addition of exogenous CCN2 to KO mesenchymal cells restored their ability to spread normally on fibronectin. Finally, utilizing an organ culture model we show that the palatal shelves of the CCN2 KO mice demonstrate an inability to fuse when apposed. Together, these data signify that CCN2 plays an indispensible role in normal development of the mammalian palate and warrants additional studies to determine the precise mechanism(s) responsible for these effects.

5.
PLoS One ; 10(2): e0115325, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25714841

RESUMO

Pre-osteoblast adhesion and interaction with extracellular matrix (ECM) proteins through integrin receptors result in activation of signaling pathways regulating osteoblast differentiation. Connective tissue growth factor (CTGF/CCN2) is a matricellular protein secreted into the ECM. Prior studies in various cell types have shown that cell adhesion to CTGF via integrin receptors results in activation of specific signaling pathways that regulate cell functions, such as differentiation and cytoskeletal reorganization. To date, there are no studies that have examined whether CTGF can serve as an adhesive substrate for osteoblasts. In this study, we used the MC3T3-E1 cell line to demonstrate that CTGF serves as an adhesive matrix for osteoblasts. Anti-integrin blocking experiments and co-immunoprecipitation assays demonstrated that the integrin αvß1 plays a key role in osteoblast adhesion to a CTGF matrix. Immunofluorescence staining of osteoblasts cultured on a CTGF matrix confirmed actin cytoskeletal reorganization, enhanced spreading, formation of focal adhesions, and activation of Rac1. Alkaline phosphatase (ALP) staining and activity assays, as well as Alizarin red staining demonstrated that osteoblast attachment to CTGF matrix enhanced maturation, bone nodule formation and matrix mineralization. To investigate whether the effect of CTGF on osteoblast differentiation involves integrin-mediated activation of specific signaling pathways, we performed Western blot, chromatin immunoprecipitation (ChIP) and qPCR assays. Osteoblasts cultured on a CTGF matrix showed increased total and phosphorylated (activated) forms of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Inhibition of ERK blocked osteogenic differentiation in cells cultured on a CTGF matrix. There was an increase in runt-related transcription factor 2 (Runx2) binding to the osteocalcin gene promoter, and in the expression of osteogenic markers regulated by Runx2. Collectively, the results of this study are the first to demonstrate CTGF serves as a suitable matrix protein, enhancing osteoblast adhesion (via αvß1 integrin) and promoting cell spreading via cytoskeletal reorganization and Rac1 activation. Furthermore, integrin-mediated activation of ERK signaling resulted in increased osteoblast differentiation accompanied by an increase in Runx2 binding to the osteocalcin promoter and in the expression of osteogenic markers.


Assuntos
Diferenciação Celular , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Citoesqueleto/metabolismo , Integrinas/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Animais , Adesão Celular , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/química , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Camundongos , Receptores de Vitronectina/metabolismo , Transdução de Sinais , Ativação Transcricional , Proteínas rac de Ligação ao GTP/metabolismo
6.
Crit Rev Eukaryot Gene Expr ; 21(1): 43-69, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21967332

RESUMO

Connective tissue growth factor (CTGF) is a 38 kDa, cysteine rich, extracellular matrix protein composed of 4 domains or modules. CTGF has been shown to regulate a diverse array of cellular functions and has been implicated in more complex biological processes such as angiogenesis, chondrogenesis, and osteogenesis. A role for CTGF in the development and maintenance of skeletal tissues first came to light in studies demonstrating its expression in cartilage and bone cells, which was dramatically increased during skeletal repair or regeneration. The physiological significance of CTGF in skeletogenesis was confirmed in CTGF-null mice, which exhibited multiple skeletal dysmorphisms as a result of impaired growth plate chondrogenesis, angiogenesis, and bone formation/mineralization. Given the emerging importance of CTGF in osteogenesis and chondrogenesis, this review will focus on its expression in skeletal tissues, its effects on osteoblast and chondrocyte differentiation and function, and the skeletal implications of ablation or over-expression of CTGF in knockout or transgenic mouse models, respectively. In addition, this review will examine the role of integrin-mediated signaling and the regulation of CTGF expression as it relates to skeletogenesis. We will emphasize CTGF studies in bone or bone cells, and will identify opportunities for future investigations concerning CTGF and chondrogenesis/osteogenesis.


Assuntos
Desenvolvimento Ósseo/fisiologia , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Peptídeos/metabolismo , Animais , Desenvolvimento Ósseo/genética , Condrogênese/genética , Condrogênese/fisiologia , Fator de Crescimento do Tecido Conjuntivo/genética , Eptifibatida , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Osteogênese/genética , Osteogênese/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA