RESUMO
Neutrophilia occurs in patients infected with SARS-CoV-2 (COVID-19) and is predictive of poor outcomes. Here, we link heterogenous neutrophil populations to disease severity in COVID-19. We identified neutrophils with features of cellular aging and immunosuppressive capacity in mild COVID-19 and features of neutrophil immaturity and activation in severe disease. The low-density neutrophil (LDN) number in circulating blood correlated with COVID-19 severity. Many of the divergent neutrophil phenotypes in COVID-19 were overrepresented in the LDN fraction and were less detectable in normal-density neutrophils. Functionally, neutrophils from patients with severe COVID-19 displayed defects in neutrophil extracellular trap formation and reactive oxygen species production. Soluble factors secreted by neutrophils from these patients inhibited T cell proliferation. Neutrophils from patients with severe COVID-19 had increased expression of arginase-1 protein, a feature that was retained in convalescent patients. Despite this increase in intracellular expression, there was a reduction in arginase-1 release by neutrophils into serum and culture supernatants. Furthermore, neutrophil-mediated T cell suppression was independent of arginase-1. Our results indicate the presence of dysfunctional, activated, and immature neutrophils in severe COVID-19.
Assuntos
Arginase , COVID-19 , Neutrófilos , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/imunologia , COVID-19/sangue , Arginase/metabolismo , Neutrófilos/metabolismo , Neutrófilos/imunologia , SARS-CoV-2/imunologia , Masculino , Pessoa de Meia-Idade , Feminino , Linfócitos T/imunologia , Linfócitos T/metabolismo , Idoso , Adulto , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Espécies Reativas de Oxigênio/metabolismo , Ativação de NeutrófiloRESUMO
Background: The current coronavirus disease 2019 (COVID-19) pandemic began in Ireland with the first confirmed positive case in March 2020. In the early stages of the pandemic clinicians and researchers in two affiliated Dublin hospitals identified the need for a COVID-19 biobanking initiative to support and enhance research into the disease. Through large scale analysis of clinical, regional, and genetic characteristics of COVID-19 patients, biobanks have helped identify, and so protect, at risk patient groups The STTAR Bioresource has been created to collect and store data and linked biological samples from patients with SARS-CoV-2 infection and healthy and disease controls. Aim: The primary objective of this study is to build a biobank, to understand the clinical characteristics and natural history of COVID-19 infection with the long-term goal of research into improved disease understanding, diagnostic tests and treatments. Methods: This is a prospective dual-site cohort study across two tertiary acute university teaching hospitals. Patients are recruited from inpatient wards or outpatient clinics. Patients with confirmed COVID-19 infection as well as healthy and specific disease control groups are recruited. Biological samples are collected and a case report form detailing demographic and medical background is entered into the bespoke secure online Dendrite database. Impact: The results of this study will be used to inform national and international strategy on health service provision and disease management related to COVID-19. In common with other biobanks, study end points evolve over time as new research questions emerge. They currently include patient survival, occurrence of severe complications of the disease or its therapy, occurrence of persistent symptoms following recovery from the acute illness and vaccine responses.