Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Chemosphere ; 359: 142253, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714250

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a large class of stable toxic chemicals which have ended up in the environment and in organisms in significant concentrations. Toxicokinetic models are needed to facilitate extrapolation of bioaccumulation data across PFAS congeners and species. For the present study, we carried out an inventory of accumulation processes specific for PFAS, deviating from traditional Persistent Organic Pollutants (POPs). In addition, we reviewed toxicokinetic models on PFAS reported in literature, classifying them according to the number of compartments distinguished as a one-compartment model (1-CM), two-compartment model (2- CM) or a multi-compartment model, (multi-CM) as well as the accumulation processes included and the parameters used. As the inventory showed that simple 1-CMs were lacking, we developed a generic 1-CM of ourselves to include PFAS specific processes and validated the model for legacy perfluoroalkyl acids. Predicted summed elimination constants were accurate for long carbon chains (>C6), indicating that the model properly represented toxicokinetic processes for most congeners. Results for urinary elimination rate constants were mixed, which might be caused by the exclusion of reabsorption processes (renal reabsorption, enterohepatic circulation). The 1-CM needs to be improved further in order to better predict individual elimination pathways. Besides that, more data on PFAS-transporter specific processes are needed to extrapolate across PFAS congeners and species.

2.
Chemosphere ; 333: 138908, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37187378

RESUMO

Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to µg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Ecossistema , Poluentes Químicos da Água/análise
3.
Chemosphere ; 311(Pt 2): 137127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334744

RESUMO

Petroleum refinery effluents (PRE) are wastewaters from industries associated with oil refining. Within Europe, PREs are regulated through local discharge permits and receive substantial treatment before emission. After treatment, PREs can still contain low levels of various pollutants potentially toxic to organisms. Earlier work, including whole-effluent toxicity assessments, has shown that the toxicity of permitted PREs is often limited. However, the extent to which PREs contribute to chemical pollution already present in the receiving environment is unknown. Therefore, our study aimed to assess the contribution of PREs to mixture toxic pressure in the environment, using the multi-substance potentially affected fraction of species (msPAF) as an indicator. Based on measured chemical concentrations, compiled species sensitivity distributions (SSD) and a mechanistic solubility model, msPAF levels were estimated for undiluted effluents at discharge points and diluted effluents downstream in receiving waters. Median msPAF-chronic and msPAF-acute levels of PREs at discharge points were 74% (P50) and 40% (P95), respectively. The calculated msPAF levels were reduced substantially to <5% downstream for most effluents (82%), indicating low to negligible toxicity of PREs in receiving environments beyond the initial mixing zone. Regardless of differences in endpoints and locations, hydrocarbons (mainly total petroleum hydrocarbons) and inorganics (mainly ammonia) explained at least 85% of the mixture toxic pressure. The msPAF levels of PREs were on average 2.5-4.5 orders of magnitude lower than msPAF levels derived from background pollution levels, suggesting that PREs were minor contributors to the toxic pressure in the environment. This study presents a generic methodology for quantifying the potential toxic pressure of PREs in the environment, identifying hotspots where more effective wastewater treatment could be needed. We explicitly discuss the uncertainties for further refinement and development of the method.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes Químicos da Água , Petróleo/toxicidade , Poluição Ambiental , Águas Residuárias , Hidrocarbonetos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
4.
Sci Rep ; 12(1): 17813, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280701

RESUMO

Nanotechnology brings benefits in fields such as biomedicine but nanoparticles (NPs) may also have adverse health effects. The effects of surface-modified NPs at the cellular level have major implications for both medicine and toxicology. Semi-empirical and mechanism-based models aid to understand the cellular transport of various NPs and its implications for quantitatively biological exposure while avoiding large-scale experiments. We hypothesized relationships between NPs-cellular elimination, surface functionality and elimination pathways by cells. Surface free energy components were used to characterize the transport of NPs onto membranes and with lipid vesicles, covering both influences by size and hydrophobicity of NPs. The model was built based on properties of neutral NPs and cells, defining Van de Waals forces, electrostatic forces and Lewis acid-base (polar) interactions between NPs and vesicles as well as between vesicles and cell membranes. We yielded a generic model for estimating exocytosis rate constants of various neutral NPs by cells based on the vesicle-transported exocytosis pathways. Our results indicate that most models are well fitted (R2 ranging from 0.61 to 0.98) and may provide good predictions of exocytosis rate constants for NPs with differing surface functionalities (prediction errors are within 2 times for macrophages). Exocytosis rates differ between cancerous cells with metastatic potential and non-cancerous cells. Our model provides a reference for cellular elimination of NPs, and intends for medical applications and risk assessment.


Assuntos
Ácidos de Lewis , Nanopartículas , Nanopartículas/metabolismo , Exocitose , Nanotecnologia , Lipídeos
5.
Water Res ; 217: 118333, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421691

RESUMO

Preserving human and environmental health requires anthropogenic pollutants to be biologically degradable. Depending on concentration, both nutrients and pollutants induce and activate metabolic capacity in the endemic bacterial consortium, which in turn aids their degradation. Knowledge on such 'acclimation' is rarely implemented in risk assessment cost-effectively. As a result, an accurate description of the mechanisms and kinetics of biodegradation remains problematic. In this study, we defined a yield 'effectivity', comprising the effectiveness at which a pollutant (substrate) enhances its own degradation by inducing (biomass) cofactors involved therein. Our architecture for calculation represents the interplay between concentration and metabolism via both stoichiometric and thermodynamic concepts. The calculus for yield 'effectivity' is biochemically intuitive, implicitly embeds co-metabolism and distinguishes 'endogenic' from 'exogenic' substances' reflecting various phenomena in biodegradation and bio-transformation studies. We combined data on half-lives of pollutants/nutrients in wastewater and surface water with transition-state rate theory to obtain also experimental values for effective yields. These quantify the state of acclimation: the portion of biodegradation kinetics attributable to (contributed by) 'natural metabolism', in view of similarity to natural substances. Calculated and experimental values showed statistically significant correspondence. Particularly, carbohydrate metabolism and nucleic acid metabolism appeared relevant for acclimation (R2 = 0.11-0.42), affecting rates up to 104.9(±0.7) times: under steady-state acclimation, a compound stoichiometrically identical to carbohydrates or nucleic acids, is 103.2 to 104.9 times faster aerobically degraded than a compound marginally similar. Our new method, simulating (contribution by) the state of acclimation, supplements existing structure-biodegradation and kinetic models for predicting biodegradation in wastewater and surface water. The accuracy of prediction may increase when characterizing nutrients/co-metabolites in terms of, e.g., elemental analysis. We discuss strengths and limitations of our approach by comparison to empirical and mechanism-based methods.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Humanos , Águas Residuárias , Água , Poluentes Químicos da Água/metabolismo , Xenobióticos
6.
Environ Sci Technol ; 56(10): 6500-6510, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35472258

RESUMO

An increasing number of pharmaceuticals found in the environment potentially impose adverse effects on organisms such as fish. Physiologically based kinetic (PBK) models are essential risk assessment tools, allowing a mechanistic approach to understanding chemical effects within organisms. However, fish PBK models have been restricted to a few species, limiting the overall applicability given the countless species. Moreover, many pharmaceuticals are ionizable, and fish PBK models accounting for ionization are rare. Here, we developed a generalized PBK model, estimating required parameters as functions of fish and chemical properties. We assessed the model performance for five pharmaceuticals (covering neutral and ionic structures). With biotransformation half-lives (HLs) from EPI Suite, 73 and 41% of the time-course estimations were within a 10-fold and a 3-fold difference from measurements, respectively. The performance improved using experimental biotransformation HLs (87 and 59%, respectively). Estimations for ionizable substances were more accurate than any of the existing species-specific PBK models. The present study is the first to develop a generalized fish PBK model focusing on mechanism-based parameterization and explicitly accounting for ionization. Our generalized model facilitates its application across chemicals and species, improving efficiency for environmental risk assessment and supporting an animal-free toxicity testing paradigm.


Assuntos
Peixes , Modelos Biológicos , Animais , Cinética , Preparações Farmacêuticas , Medição de Risco
7.
Environ Res ; 209: 112777, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35074349

RESUMO

The EU Water Framework Directive and Priority Substance Directive provide a framework to identify substances that potentially pose a risk to surface waters and provide a legal basis whereby member states are required to monitor and comply with environmental quality standards (EQSs) set for those substances. The cost and effort to continuously measure and analyse real world concentrations in all water bodies across Europe are high. Establishing the reliability of environmental exposure models to predict concentrations of priority substances is key, both to fill data gaps left by monitoring campaigns, and to predict the outcomes of actions that might be taken to reduce exposure. In this study, we aimed to validate the ePiE model for the pharmaceutical ibuprofen by comparing predictions made using the best possible consumption data with measured river concentrations. The results demonstrate that the ePiE model makes useful, conservative exposure predictions for ibuprofen, typically within a factor of 3 of mean measured values. This exercise was performed across a number of basins within Europe, representative of varying conditions, including consumption rates, population densities and climates. Incorporating specific information pertaining to the basin or country being assessed, such as custom WWTP removal rates, was found to improve the realism and accuracy of predictions. We found that the extrapolation of consumption data between countries should be kept to a minimum when modelling the exposure of pharmaceuticals, with the per capita consumption of ibuprofen varying by nearly a factor of 10.


Assuntos
Ibuprofeno , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Europa (Continente) , Reprodutibilidade dos Testes , Rios , Poluentes Químicos da Água/análise
8.
Chemosphere ; 286(Pt 3): 131930, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426290

RESUMO

A toxicokinetic-toxicodynamic model was constructed to delineate the exposure-response causality. The model could be used: to predict metal accumulation considering the influence of water chemistry and biotic ligand characteristics; to simulate the dynamics of subcellular partitioning considering metabolism, detoxification, and elimination; and to predict chronic toxicity as represented by biomarker responses from the concentration of metals in the fraction of potentially toxic metal. The model was calibrated with data generated from an experiment in which the Zebra mussel Dreissena polymorpha was exposed to Cu at nominal concentrations of 25 and 50 µg/L and with varied Na+ concentrations in water up to 4.0 mmol/L for 24 days. Data used in the calibration included physicochemical conditions of the exposure environment, Cu concentrations in subcellular fractions, and oxidative stress-induced responses, i.e. glutathione-S-transferase activity and lipid peroxidation. The model explained the dynamics of subcellular Cu partitioning and the effect mechanism reasonably well. With a low affinity constant for Na + binding to Cu2+ uptake sites, Na + had limited influence on Cu2+ uptake at low Na+ concentrations in water. Copper was taken up into the metabolically available pool (MAP) at a largely higher rate than into the cellular debris. Similar Cu concentrations were found in these two fractions at low exposure levels, which could be attributed to sequestration pathways (metabolism, detoxification, and elimination) in the MAP. However, such sequestration was inefficient as shown by similar Cu concentrations in detoxified fractions with increasing exposure level accompanied by the increasing Cu concentration in the MAP.


Assuntos
Dreissena , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Ligantes , Metais , Poluentes Químicos da Água/toxicidade
9.
Aquat Toxicol ; 241: 106015, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34753109

RESUMO

A toxicokinetic-toxicodynamic model based on subcellular metal partitioning is presented for simulating chronic toxicity of copper (Cu) from the estimated concentration in the fraction of potentially toxic metal (PTM). As such, the model allows for considering the significance of different pathways of metal sequestration in predicting metal toxicity. In the metabolically available pool (MAP), excess metals above the metabolic requirements and the detoxification and elimination capacity form the PTM fraction. The reversibly and irreversibly detoxified fractions were distinguished in the biologically detoxified compartment, while responses of organisms were related to Cu accumulation in the PTM fraction. The model was calibrated using the data on Cu concentrations in subcellular fractions and physiological responses measured by the glutathione S-transferase activity and the lipid peroxidation level during 24-day exposure of the Zebra mussel to Cu at concentrations of 25 and 50 µg/L and varying Na+ concentrations up to 4.0 mmol/L. The model was capable of explaining dynamics in the subcellular Cu partitioning, e.g. the trade-off between elimination and detoxification as well as the dependence of net accumulation, elimination, detoxification, and metabolism on the exposure level. Increases in the net accumulation rate in the MAP contributed to increased concentrations of Cu in this fraction. Moreover, these results are indicative of ineffective detoxification at high exposure levels and spill-over effects of detoxification.


Assuntos
Dreissena , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Metais , Toxicocinética , Poluentes Químicos da Água/toxicidade
10.
Bioscience ; 71(11): 1171-1178, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34733118

RESUMO

It is well known that seagrass meadows sequester atmospheric carbon dioxide, protect coasts, provide nurseries for global fisheries, and enhance biodiversity. Large-scale restoration of lost seagrass meadows is urgently needed to revive these planetary ecosystem services, but sourcing donor material from natural meadows would further decline them. Therefore, we advocate the domestication and mariculture of seagrasses in order to produce the large quantities of seed needed for successful rewilding of the sea with seagrass meadows. We provide a roadmap for our proposed solution and show that 44% of seagrass species have promising reproductive traits for domestication and rewilding by seeds. The principle of partially domesticating species to enable subsequent large-scale rewilding may form a successful shortcut to restore threatened keystone species and their vital ecosystem services.

11.
Mar Pollut Bull ; 173(Pt A): 112982, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34627035

RESUMO

Microplastic pollution is a growing, yet poorly understood problem. Here, we assessed the relationship between microplastic concentration and distance to rivers, shorelines, cities, sediment grain size or water depth in sediments of the world's largest (semi-)enclosed aquatic basins. Microplastic was extracted from sediment using density separation, elutriation and hydrophobic adhesion. Fibers and transparent or white microplastic particles were the most abundant shape and color. The microplastic concentration in sediments of the Black Sea was about twice as high compared to that in the Caspian Sea. Fragment concentrations decreased with depth, while fiber concentrations were independent of depth. Overall, no relationship with distance to shores, rivers and cities or with grain size was observed. However, within some depth classes concentrations were related to the distance from rivers, shores and cities.


Assuntos
Microplásticos , Poluentes Químicos da Água , Mar Negro , Mar Cáspio , Monitoramento Ambiental , Sedimentos Geológicos , Microesferas , Plásticos , Poluentes Químicos da Água/análise
12.
Environ Pollut ; 287: 117645, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426373

RESUMO

Chronic toxicity of copper (Cu) at sublethal levels is associated with ionoregulatory disturbance and oxidative stress. These factors were considered in a toxicokinetic-toxicodynamic model in the present study. The ionoregulatory disturbance was evaluated by the activity of the Na+/K+-ATPase enzyme (NKA), while oxidative stress was presented by lipid peroxidation (LPO) and glutathione-S-transferase (GST) activity. NKA activity was related to the binding of Cu2+ and Na + to NKA. LPO and GST activity were linked with the simulated concentration of unbound Cu. The model was calibrated using previously reported data and empirical data generated when zebra mussels were exposed to Cu. The model clearly demonstrated that Cu might inhibit NKA activity by reducing the number of functional pump sites and the limited Cu-bound NKA turnover rate. An ordinary differential equation was used to describe the relationship between the simulated concentration of unbound Cu and LPO/GST activity. Although this method could not explain the fluctuations in these biomarkers during the experiment, the measurements were within the confidence interval of estimations. Model simulation consistently shows non-significant differences in LPO and GST activity at two exposure levels, similar to the empirical observation.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Cobre/análise , Cobre/toxicidade , Homeostase , Peroxidação de Lipídeos , Estresse Oxidativo , Toxicocinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Appl Microbiol Biotechnol ; 105(16-17): 6515-6527, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423412

RESUMO

Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC-MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. KEY POINTS: • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Biotransformação , Cromatografia Líquida , RNA Ribossômico 16S/genética , Esgotos , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
14.
Environ Sci Technol ; 55(14): 10012-10024, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34218659

RESUMO

We aimed to identify patterns in the internal distribution of persistent organic pollutants (POPs) and assess contributing factors using sea turtles and their offspring as a case study of a long-lived wildlife species. We systematically synthesized 40 years of data and developed a lipid database to test whether lipid-normalized POP concentrations are equal among tissues as expected under steady state for lipophilic compounds. Results supported equal partitioning among tissues with high blood flow or perfusion including the heart, kidney, muscle, and lung. Observed differences in the brain, fat, and blood plasma, however, suggest the physiological influence of the blood-brain barrier, limited perfusion, and protein content, respectively. Polybrominated diphenyl ethers partitioned comparably to legacy POPs. Polycyclic aromatic hydrocarbons, meanwhile, partitioned more into the lung, colon, and muscle compared to the liver under chronic and acute field exposure. Partitioning ratios of individual POPs among tissues were significantly related to the lipophilicity of compounds (as estimated by Kow) in half of the observed cases, and significant differences between juveniles and adults underscore physiological differences across life stages. The comprehensive tissue partitioning patterns presented here provide a quantitative basis to support comparative assessments of POP pollution derived from biomonitoring among multiple tissues.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Tartarugas , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Poluentes Ambientais/análise , Éteres Difenil Halogenados/análise , Poluentes Orgânicos Persistentes
15.
J Environ Manage ; 281: 111873, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385900

RESUMO

Chemical pollution impinges on the quality of water systems and the ecosystem services (ESs) they provide. Expression of ESs in monetary units has become an essential tool for sustainable ecosystem management. However, the impact of chemical pollution on ESs is rarely quantified, and ES valuation often focuses on individual services without considering the total services provided by the ecosystem. The purpose of the study was to develop a stepwise approach to quantify the impact of sediment pollution on the total ES value provided by water systems. Thereby, we calculated the total ES value loss as a function of the multi-substance potentially affected fraction of species at the HC50 level (msPAF(HC50)). The function is a combination of relationships between, subsequently: the msPAF(HC50), diversity, productivity and total ES value. Regardless of the inherent differences between terrestrial and aquatic ecosystems, an increase of diversity generally corresponded to an increase in productivity with curvilinear or linear effects. A positive correlation between productivity and total values of ESs of biomes was observed. The combined relationships showed that 1% msPAF(HC50) corresponded to on average 0.5% (0.05-1.40%) of total ES value loss. The ES loss due to polluted sediments in the Waal-Meuse river estuary (the Netherlands) and Flemish waterways (Belgium) was estimated to be 0.3-5 and 0.6-10 thousand 2007$/ha/yr, respectively. Our study presents a novel methodology to assess the impact of chemical exposure on diversity, productivity, and total value that ecosystems provide. With sufficient monitoring data, our generic methodology can be applied for any chemical and region of interest and help water managers make informed decisions on cost-effective measures to remedy pollution. Acknowledging that the ES loss estimates as a function of PAF(HC50) are crude, we explicitly discuss the uncertainties in each step for further development and application of the methodology.


Assuntos
Ecossistema , Água , Bélgica , Poluição Ambiental , Países Baixos
16.
Chemosphere ; 271: 129446, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33454661

RESUMO

Agricultural, industrial and household chemicals are emitted in large rivers along populated areas, transported by water and deposited in sediments, posing (eco)toxicological risks. Sediments have received less attention than surface waters, likely because of the intrinsic complexity of interactions between sediment constituents complicating correct framing of exposures. Sadly, thorough assessment of the in situ behavior of sediment constituents in bioassays is often not practical. Alternatively, we related physicochemical properties of sediments from field testing to results from bioassays. The case study covers Flemish sediment (incl. Scheldt and Meuse) and mortality of Hyalella azteca, a sensitive bio-indicator. Though variable across Flanders' main water bodies, heavy metals and ammoniacal nitrogen dominate the observed toxicity according to toxic unit (TU) assessments. Depending on the water body we explain between 50 and 90% of the variance in the observed H. azteca mortality, substantially more than previous ecotoxicity studies. We attribute the remaining variance to potential incoherently documented biophysicochemical sediment properties and concentrations of non-target biocides, testing conditions/set-ups and/or species variabilities. We discuss the relative influence of heavy metals/metaloxides, nitrogen (e.g. fertilizer), polycyclic aromatics and organochlorides. We highlight both direct and indirect mortality mechanisms. We note potential synergetic mixture effects between ammoniacal nitrogen and chromium. Such synergy may be phenomenological of 'standard' aerobic bioassays, and prove a complementary method alongside the 'acid-volatile sulfide test' to more effectively link concentration to toxicity. Future study ought to include variation in biophysicochemical properties between sampling locations and batch bioassays. Our approach enables water managers to interpret their monitoring data by converting sediment concentrations to H. azteca mortality and prioritize substances that contribute most.


Assuntos
Anfípodes , Poluentes Químicos da Água , Amônia , Animais , Bioensaio , Cromatos , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Sci Total Environ ; 752: 141624, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32892036

RESUMO

When assessing the environmental exposure of active pharmaceutical ingredients (APIs), the mass contributed from over the counter (OTC) sales are often not included due to difficulty obtaining this data and topical formats are overlooked completely. This study presents a comprehensive approach, investigating the significance of OTC and topical applications as sources of API releases to wastewater, in addition to temporal and subnational variations in use in the UK. The study provides methods to obtain and make use of OTC sales data which can be applied widely. The calculated releases to wastewater compared well with influent concentrations measured at several UK wastewater treatment plants (WWTPs). Consistent overestimation was observed, attributed to a number of factors, including in-sewer removal. OTC sales were found to make up a large proportion of the mass of ibuprofen (76%) and diclofenac (35%) consumed and topical formats were also found to be vital, contributing disproportionately to wastewater loadings per unit mass of ibuprofen and diclofenac used (43% and 99% of the total mass released, respectively). Releases of the APIs investigated did not vary temporally, but regional variation was significant and where possible should be considered for the most accurate exposure assessment of pharmaceuticals.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Exposição Ambiental , Monitoramento Ambiental , Águas Residuárias/análise , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 754: 142380, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254886

RESUMO

Although atmospheric concentrations of many conventional persistent organic pollutants (POPs) have decreased in the Arctic over the past few decades, levels of most POPs and mercury remain high since the 1990s or start to increase again in Arctic areas, especially polar bears. So far, studies generally focused on individual effects of POPs, and do not directly link POP concentrations in prey species to population-specific parameters. In this study we therefore aimed to estimate the effect of legacy POPs and mercury on population growth rate of nineteen polar bear subpopulations. We modelled population development in three scenarios, based on species sensitivity distributions (SSDs) derived for POPs based on ecotoxicity data for endothermic species. In the first scenario, ecotoxicity data for polar bears were based on the HC50 (the concentration at which 50% of the species is affected). The other two scenarios were based on the HC5 and HC95. Considerable variation in effects of POPs could be observed among the scenarios. In our intermediate scenario, we predicted subpopulation decline for ten out of 15 polar bear subpopulations. The estimated population growth rate was least reduced in Gulf of Boothia and Foxe Basin. On average, PCB concentrations in prey (in µg/g toxic equivalency (TEQ)) posed the largest threat to polar bear subpopulations, with negative modelled population growth rates for the majority of subpopulations. We did not find a correlation between modelled population changes and monitored population trends for the majority of chemical-subpopulation combinations. Modelled population growth rates increased over time, implying a decreasing effect of PCBs, DDTs, and mercury. Polar bear subpopulations are reportedly still declining in four out of the seven subpopulations for which sufficient long-term monitoring data is available, as reported by the IUCN-PBSG. This implies that other emerging pollutants or other anthropogenic stressors may affect polar bear subpopulations.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Ursidae , Animais , Regiões Árticas , Monitoramento Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Crescimento Demográfico
19.
Chemosphere ; 263: 128081, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297080

RESUMO

Distribution and elimination of petroleum products can be predicted in aerobic wastewater treatment plants (WWTPs) using models such as multimedia fate model SimpleTreat. An advantage of the SimpleTreat model is that it only requires a few basic properties of a chemical in wastewater to calculate partitioning, biodegradation and ultimately emissions to air, surface water and produced sludge. The SimpleTreat model structure reflects a WWTP scheme. However, refinery WWTPs typically incorporate more advanced treatment processes such as dissolved air flotation (DAF), a process that clarifies wastewaters by the removal of suspended matter such as oil or solids. The objective of this work was to develop a WWTP removal model that includes DAF treatment. To understand how including a DAF in the model affects the predicted concentrations of petroleum constituents in effluent, we replaced the primary sedimentation module in SimpleTreat with a module simulating DAF. Subsequently, we compared results from the WWTP-DAF model with results obtained with the original SimpleTreat model for a library of over 1500 representative hydrocarbon constituents. The increased air-water exchange in a WWTP-DAF unit resulted in higher predicted removal of volatile constituents. Predicted removal with DAF was on average 17% larger than removal with primary sedimentation. We compared modelled results with measured removal data from the literature, which supported that this model refinement continues to improve the technical basis of assessment of petroleum products.


Assuntos
Petróleo , Esgotos , Biodegradação Ambiental , Hidrocarbonetos , Eliminação de Resíduos Líquidos , Águas Residuárias
20.
Chemosphere ; 267: 129278, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341731

RESUMO

The stenohaline zebra mussel, Dreissena polymorpha, is uniquely sensitive to the ionic composition of its aquatic environment. Waterborne copper (Cu) uptake and accumulation in zebra mussels were examined at various conditions in an environmentally relevant range in freshwater, i.e. Cu exposure levels (nominal concentrations of 25 and 50 µg/L), pH (5.8-8.3), and sodium (Na+) concentrations (up to 4.0 mM). Copper accumulation was simulated by a kinetic model covering two compartments, the gills and the remaining tissues. The Cu uptake rate constant decreased with decreasing pH from 8.3 down to 6.5, indicating interactions between H+ and Cu at uptake sites. The kinetic simulation showed dose-dependent effects of Na+ on Cu uptake. At 25 µg/L Cu, addition of Na+ at 0.5 mM significantly inhibited the Cu uptake rate, while no significant differences were found in the uptake rate upon further addition of Na+ up to a concentration of 4.0 mM. At 50 µg/L Cu, the Cu uptake rate was not influenced by Na+ addition. Calibration results exhibited dose-dependent elimination rates with more profound elimination with increasing exposure levels. With kinetic parameters calibrated at environmentally relevant conditions, in terms of pH and Na+ concentrations, the model performed well in predicting Cu accumulation based on independent data sets. Estimates of the Cu concentration in mussels were within a factor of 2 of the measurements. This demonstrates potential application of kinetic models that are calibrated in environmentally relevant freshwater conditions.


Assuntos
Dreissena , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Concentração de Íons de Hidrogênio , Sódio , Toxicocinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA