Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Ann Bot ; 109(7): 1227-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22628364

RESUMO

BACKGROUND AND AIMS: Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes. METHODS: A new batch of B. rapa-B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow's carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used. KEY RESULTS: The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups. Conclusions A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker-assisted selection and breeding for yellow seeds.


Assuntos
Brassica rapa/genética , Cromossomos de Plantas , Cor , Ligação Genética , Genoma de Planta , Aneuploidia , Brassica rapa/embriologia , Hibridização in Situ Fluorescente
3.
Theor Appl Genet ; 125(3): 455-66, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22422193

RESUMO

Brassica rapa var. trilocularis-B. oleracea var. alboglabra monosomic alien addition lines (MAALs) were used to assign simple sequence repeat (SSR) markers to the nine C-genome chromosomes. A total of 64 SSR markers specific to single C-chromosomes were identified. The number of specific markers for each chromosome varied from two (C3) to ten (C4, C7 and C9), where the designation of the chromosomes was according to Cheng et al. (Genome 38:313-319, 1995). Seventeen additional SSRs, which were duplicated on 2-5 C-chromosomes, were also identified. Using the SSR markers assigned to the previously developed eight MAALs and recently obtained aneuploid plants, a new Brassica rapa-B. oleracea var. alboglabra MAAL carrying the alien chromosome C7 was identified and developed. The application of reported genetically mapped SSR markers on the nine MAALs contributed to the determination of the correspondence between numerical C-genome cytological (Cheng et al. in Genome 38:313-319, 1995) and linkage group designations. This correspondence facilitates the integration of C-genome genetic information that has been generated based on the two designation systems and accordingly increases our knowledge about each chromosome. The present study is a significant contribution to genetic linkage analysis of SSR markers and important agronomic traits in B. oleracea and to the potential use of the MAALs in plant breeding.


Assuntos
Brassica/genética , Cromossomos de Plantas/genética , DNA de Plantas , Genoma de Planta , Repetições de Microssatélites , Aneuploidia , Mapeamento Cromossômico/métodos , Eletroforese , Ligação Genética , Polimorfismo Genético
4.
Plant Signal Behav ; 4(1): 55-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19704709

RESUMO

High-lipid oat is a potential oil crop. Chemical and microscopical analyses have shown that the major part of the grain lipids are stored in the endosperm. While oil bodies are intact in the aleurone layer, scutellum and embryo, they have less associated proteins (oleosins) and undergo fusion in the starchy endosperm. In this report, we document the distribution of lipids in the endosperm microscopically. Underneath the aleurone layer, lipids are most abundant in the subaleurone cells and in the endosperm cells in the vicinity of the scutellum and embryo. Thus the major areas of oil storage are close to the living tissues of the grain, the sites of enzyme production in connection with germination and mobilization. The documentation of cellular structural changes, and implication of the fused state of oil bodies, during germination, remains to be elucidated.

5.
Planta ; 228(4): 589-99, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18563438

RESUMO

Few microscopical studies have been made on lipid storage in oat grains, with variable results as to the extent of lipid accumulation in the starchy endosperm. Grains of medium- and high-lipid oat (Avena sativa L.) were studied at two developmental stages and at maturity, by light microscopy using different staining methods, and by scanning and transmission electron microscopy. Discrete oil bodies occurred in the aleurone layer, scutellum and embryo. In contrast, oil bodies in the starchy endosperm often had diffuse boundaries and fused with each other and with protein vacuoles during grain development, forming a continuous oil matrix between the protein and starch components. The different microscopical methods were confirmative to each other regarding the coalescence of oil bodies, a phenomenon probably correlated with the reduced amount of oil-body associated proteins in the endosperm. This was supported experimentally by SDS-PAGE separation of oil-body proteins and immunoblotting and immunolocalization with antibodies against a 16 kD oil-body protein. Much more oil-body proteins per amount of oil occurred in the embryo and scutellum than in the endosperm. Immunolocalization of 14 and 16 kD oil-body associated proteins on sectioned grains resulted in more heavy labeling of the embryo, scutellum and aleurone layer than the rest of the endosperm. Observations on the appearance of oil bodies at an early stage of development pertain to the prevailing hypotheses of oil-body biogenesis.


Assuntos
Avena/citologia , Lipídeos/biossíntese , Óleos de Plantas , Sementes/citologia , Avena/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Lipídeos/análise , Microscopia Eletrônica , Óleos de Plantas/química , Proteínas de Plantas/análise , Sementes/ultraestrutura , Coloração e Rotulagem
6.
J Exp Bot ; 58(10): 2463-70, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17586606

RESUMO

Oat (Avena sativa) is unusual in comparison with other cereals since there are varieties with up to 18% oil content. The lipid content and fatty acid composition in different parts of the grain during seed development were characterized in cultivars Freja (6% oil) and Matilda (10% oil), using thin-layer and gas chromatography, and light and electron microscopy. The majority of lipids (86-90%) were found in the endosperm. Ninety-five per cent of the higher oil content of cv. Matilda compared with cv. Freja was due to increased oil content of the endosperm. Up to 84% of the lipids were deposited during the first half of seed development, when seeds where still green with a milky endosperm. Microscopy studies revealed that whereas oil bodies of the embryo and scutellum still contained a discrete shape upon grain maturation, oil bodies of the endosperms fused upon maturation and formed smears of oil.


Assuntos
Avena/embriologia , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Sementes/metabolismo , Avena/metabolismo , Avena/ultraestrutura , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura
7.
Ann Bot ; 97(2): 205-16, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16357054

RESUMO

BACKGROUND AND AIMS: The Brassicaceae family encompasses numerous species of great agronomic importance, belonging to such genera, as Brassica, Raphanus, Sinapis and Armoracia. Many of them are characterized by extensive intraspecific diversity of phenotypes. The present study focuses on the polymorphism of number, appearance and chromosomal localization of ribosomal DNA (rDNA) sites and, when possible, in relation to polyploidy, in 42 accessions of Brassica species and ten accessions of Diplotaxis, Eruca, Raphanus and Sinapis species. METHODS: Chromosomal localization of ribosomal DNA was carried out using dual colour fluorescence in situ hybridization (FISH) with 5S rDNA and 25S rDNA sequences as probes on enzymatically digested root-tip meristematic cells. KEY RESULTS: Loci for 5S and 18S-5.8S-25S rDNA were determined for the first time in six taxa, and previously unreported rDNA constellations were described in an additional 12 accessions. FISH revealed frequent polymorphism in number, appearance and chromosomal localization of both 5S and 25S rDNA sites. This phenomenon was most commonly observed in the A genome of Brassica, where it involves exclusively pericentromeric sites of 5S and 25S rRNA genes. The intraspecific polymorphism was between subspecies/varieties or within a variety or cultivar (i.e. interindividual). CONCLUSIONS: The number of rDNA sites can differ up to 5-fold in species with the same chromosome number. In addition to the eight previously reported chromosomal types with ribosomal genes, three new variant types are described. The extent of polymorphism is genome dependent. Comparing the A, B and C genomes revealed the highest rDNA polymorphism in the A genome. The loci carrying presumably inactive ribosomal RNA genes are particularly prone to polymorphism. It can also be concluded that there is no obvious polyploidization-related tendency to reduce the number of ribosomal DNA loci in the allotetraploid species, when compared with their putative diploid progenitors. The observed differences are rather caused by the prevailing polymorphism within the diploids and allotetraploids. This would make it difficult to predict expected numbers of rDNA loci in natural polyploids.


Assuntos
Brassicaceae/genética , Cromossomos de Plantas/química , DNA Ribossômico/análise , Mapeamento Cromossômico , Variação Genética , Genoma de Planta , Hibridização in Situ Fluorescente , Fenótipo , Polimorfismo Genético , Poliploidia
8.
Theor Appl Genet ; 111(2): 196-205, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15756535

RESUMO

Interspecific alien chromosome addition lines can be very useful for gene mapping and studying chromosome homoeology between closely related species. In this study we demonstrate a simple but robust manner of identifying individual C-genome chromosomes (C5, C8 and C9) in the A-genome background through the simultaneous use of 5S and 25S ribosomal probes on mitotic and meiotic chromosomes of three different Brassica rapa-B. oleracea var. alboglabra monosomic addition lines. Sequential silver staining and fluorescence in situ hybridisation indicated that 18S-5.8S-25S rRNA genes on the additional chromosome C9 are expressed in the A-genome background. Meiotic behaviour of the additional chromosomes was studied in pollen mother cells at diakinesis and metaphase I. In all of the addition lines the alien chromosome was most frequently observed as a univalent. The alien chromosome C5, which carries an intercalary 5S rDNA locus, occasionally formed trivalents that involved either rDNA- or non rDNA-carrying chromosomes from the A genome. In the case of chromosomes C8 and C9, the most frequently observed intergenomic associations involved the regions occupied by 18S-5.8S-25S ribosomal RNA genes. It is possible that not all such associations represent true pairing but are remnants of nucleolar associations from the preceding interphase. Variations in the numbers and distribution of 5S and 25S rDNA sites between cultivars of B. oleracea, B. oleracea var. alboglabra and B. rapa are discussed.


Assuntos
Brassica/genética , Cromossomos de Plantas/genética , Análise Citogenética/métodos , Hibridização Genética , Hibridização in Situ Fluorescente , Sondas Moleculares , RNA Ribossômico/genética , Coloração pela Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA