Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Bioact Mater ; 38: 399-410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38774457

RESUMO

Mesenchymal stem cell (MSC) migration determines the healing capacity of bone and is crucial in promoting bone regeneration. Migration of MSCs is highly dependent on degradation of extracellular matrix by proteolytic enzymes. However, the underlying mechanisms of how enzymolysis paves the way for MSCs to migrate from their niche to the defect area is still not fully understood. Here, this study shows that high-temperature requirement A3 (HtrA3) overcomes the physical barrier and provides anchor points through collagen IV degradation, paving the way for MSC migration. HtrA3 is upregulated in MSCs at the leading edge of bone defect during the early stage of healing. HtrA3 degrades the surrounding collagen IV, which increases the collagen network porosity and increases integrin ß1 expression. Subsequently, integrin ß1 enhances the mechanotransduction of MSCs, thus remodeling the cytoskeleton, increasing cellular stiffness and nuclear translocation of YAP, eventually promoting the migration and subsequent osteogenic differentiation of MSCs. Local administration of recombinant HtrA3 in rat cranial bone defects significantly increases new bone formation and further validates the enhancement of MSC migration. This study helps to reveal the novel roles of HtrA3, explore potential targets for regenerative medicine, and offer new insights for the development of bioactive materials.

2.
Tissue Eng Part A ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38756085

RESUMO

Ischemic stroke is a devastating medical condition with poor prognosis due to the lack of effective treatment modalities. Transplantation of human neural stem cells or primary neural cells is a promising treatment approach, but this is hindered by limited suitable cell sources and low in vitro expansion capacity. This study aimed i) to use small molecules to reprogram gingival mesenchymal stem cells (GMSCs) commitment to the neural lineage cells in vitro, and ii) to use hyaluronic acid (HA) hydrogel scaffolds seeded with GMSCs-derived neural lineage cells to treat ischemic stroke invivo. Neural induction was carried out with a small molecule cocktail-based one-step culture protocol over a period of 24 hours. The induced cells were analyzed for expression of neural markers with immunocytochemistry and qRT-PCR. The SD rats (n=100) were subjected to the middle cerebral artery occlusion (MCAO) reperfusion ischemic stroke model. Then, after 8 days post-MCAO, the modelled rats were randomly assigned to six study groups (n=12 per group): (i) GMSCs, (ii) GMSCs-derived neural lineage cells, (iii) HA and GMSCs-derived neural lineage cells, (iv) HA, (v) PBS, and (vi) sham transplantation control, and received their respective transplantation. Evaluation of post-stroke recovery were performed by the behavioral tests and histological assessments. The morphologically altered nature of neural lineages has been observed of the GMSCs treated with small molecules compared to the untreated controls. As shown by the qRT-PCR and immunocytochemistry, small molecules further signifcantly enhanced the experession level of neural markers of GMSCs as compared with the untreated controls (all p<0.05). Intracerebral injection of self-assembling HA hydrogel carrying GMSCs-derived neural lineage cells promoted the recovery of neural function and reduced ischemic damage in rats with ischemic stroke, as demonstrated by histological examination and behavioral assessments (all p<0.05). In conclusion, the small molecule cocktail significantly enhanced the differentiation of GMSCs into neural lineage cells. The HA hydrogel was found to facilitate the proliferation and differentiation of GMSCs-derived neural lineage cells. Furthermore, HA hydrogel seeded with GMSCs-derived neural lineage cells could promote tissue repair and functional recovery in rats with ischemic stroke and may be a promising alternative treatment modality for stroke.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38766605

RESUMO

Objective: To validated a classifier to distinguish the status of rotator cuff tear and predict post-operative re-tear by utilizing magnetic resonance imaging (MRI) markers. Methods: This retrospective study included patients with healthy rotator cuff and patients diagnosed as rotator cuff tear (RCT) by MRI. Radiomics features were identified from the pre-operative shoulder MRI and selected by using maximum relevance minimum redundancy (MRMR) methods. A radiomics model for diagnosis of RCT was constructed, based on the 3D volume of interest (VOI) of supraspinatus. Another model for the prediction of rotator re-tear after rotator cuff repair (Re-RCT) was constructed based on VOI of humerus, supraspinatus, infraspinatus and other clinical parameters. Results: The model for diagnosing the status of RCT produced an area under the receiver operating characteristic curve (AUC) of 0.989 in the training cohort and 0.979 for the validation cohort. The radiomics model for predicting Re-RCT produced an AUC of 0.923 ± 0.017 for the training dataset and 0.790 ± 0.082 for the validation dataset. The nomogram combining radiomics features and clinical factors yielded an AUC of 0.961 ± 0.020 for the training dataset and 0.808 ± 0.081 for the validation dataset, which displayed the best performance among all models. Conclusion: Radiomics models for the diagnosis of rotator cuff tear and prediction of post-operative Re-RCT yielded a decent prediction accuracy.

4.
Cell Prolif ; : e13640, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556840

RESUMO

Macrophages play a pivotal role in the immunological cascade activated in response to biomedical implants, which predetermine acceptance or rejection of implants by the host via pro- and anti-inflammatory polarisation states. The role of chemical signals in macrophage polarisation is well-established, but how physical cues regulate macrophage function that may play a fundamental role in implant-bone interface, remains poorly understood. Here we find that bone marrow-derived macrophages (BMDM) cultured on polyacrylamide gels of varying stiffness exhibit different polarisation states. BMDM are 'primed' to a pro-inflammatory M1 phenotype on stiff substrates, while to an anti-inflammatory M2 phenotype on soft and medium stiffness substrates. It is further observed that matrix stiffening increases Piezo1 expression, as well as leads to subsequent activation of the mechanotransduction signalling effector YAP, thus favouring M1 polarisation whilst suppressing M2 polarisation. Moreover, upon treatment with YAP inhibitor, we successfully induce macrophage re-polarisation to the M2 state within the implant site microenvironment, which in turn promotes implant osseointegration. Collectively, our present study thus characterises the critical role of the Piezo1-YAP signalling axis in macrophage mechanosensing and stiffness-mediated macrophage polarisation and provides cues for the design of immuno-modulatory biomaterials that can regulate the macrophage phenotype.

5.
Bone Res ; 12(1): 23, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594236

RESUMO

Bone tissue renewal can be enhanced through co-transplantation of bone mesenchymal stem cells (BMSCs) and vascular endothelial cells (ECs). However, there are apparent limitations in stem cell-based therapy which hinder its clinic translation. Hence, we investigated the potential of alternative stem cell substitutes for facilitating bone regeneration. In this study, we successfully prepared cell membrane vesicles (CMVs) from BMSCs and ECs. The results showed that BMSC-derived cell membrane vesicles (BMSC-CMVs) possessed membrane receptors involved in juxtacrine signaling and growth factors derived from their parental cells. EC-derived cell membrane vesicles (EC-CMVs) also contained BMP2 and VEGF derived from their parental cells. BMSC-CMVs enhanced tube formation and migration ability of hUVECs, while EC-CMVs promoted the osteogenic differentiation of hBMSCs in vitro. Using a rat skull defect model, we found that co-transplantation of BMSC-CMVs and EC-CMVs could stimulate angiogenesis and bone formation in vivo. Therefore, our research might provide an innovative and feasible approach for cell-free therapy in bone tissue regeneration.


Assuntos
Células Endoteliais , Osteogênese , Ratos , Animais , Regeneração Óssea , Osso e Ossos , Membrana Celular
6.
J Orthop Translat ; 44: 139-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38328343

RESUMO

Objective: It is a common clinical phenomenon that blood infiltrates into the injured tendon caused by sports injuries, accidental injuries, and surgery. However, the role of blood infiltration into the injured tendon has not been investigated. Methods: A blood-induced rat model was established and the impact of blood infiltration on inflammation and HO of the injured tendon was assessed. Cell adhesion, viability, apoptosis, and gene expression were measured to evaluate the effect of blood treatment on tendon stem/progenitor cells (TSPCs). Then RNA-seq was used to assess transcriptomic changes in tendons in a blood infiltration environment. At last, the small molecule drug PI3K inhibitor LY294002 was used for in vivo and in vitro HO treatment. Results: Blood caused acute inflammation in the short term and more severe HO in the long term. Then we found that blood treatment increased cell apoptosis and decreased cell adhesion and tenonic gene expression of TSPCs. Furthermore, blood treatment promoted osteochondrogenic differentiation of TSPCs. Next, we used RNA-seq to find that the PI3K/AKT signaling pathway was activated in blood-treated tendon tissues. By inhibiting PI3K with a small molecule drug LY294002, the expression of osteochondrogenic genes was markedly downregulated while the expression of tenonic genes was significantly upregulated. At last, we also found that LY294002 treatment significantly reduced the tendon HO in the rat blood-induced model. Conclusion: Our findings indicate that the upregulated PI3K/AKT signaling pathway is implicated in the aggravation of tendon HO. Therefore, inhibitors targeting the PI3K/AKT pathway would be a promising approach to treat blood-induced tendon HO.

7.
Cell Commun Signal ; 22(1): 24, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195565

RESUMO

Angiogenesis is a complex, highly-coordinated and multi-step process of new blood vessel formation from pre-existing blood vessels. When initiated, the sprouting process is spearheaded by the specialized endothelial cells (ECs) known as tip cells, which guide the organization of accompanying stalk cells and determine the function and morphology of the finally-formed blood vessels. Recent studies indicate that the orchestration and coordination of angiogenesis involve dynamic tip cell selection, which is the competitive selection of cells to lead the angiogenic sprouts. Therefore, this review attempt to summarize the underlying mechanisms involved in tip cell specification in a dynamic manner to enable readers to gain a systemic and overall understanding of tip cell formation, involving cooperative interaction of cell rearrangement with Notch and YAP/TAZ signaling. Various mechanical and chemical signaling cues are integrated to ensure the right number of cells at the right place during angiogenesis, thereby precisely orchestrating morphogenic functions that ensure correct patterning of blood vessels. Video Abstract.


Assuntos
Células Endoteliais , Transdução de Sinais , Morfogênese
8.
Adv Mater ; 36(8): e2306292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37723937

RESUMO

Nanozymes, as one of the most efficient reactive oxygen species (ROS)-scavenging biomaterials, are receiving wide attention in promoting diabetic wound healing. Despite recent attempts at improving the catalytic efficiency of Pt-based nanozymes (e.g., PtCu, one of the best systems), they still display quite limited ROS scavenging capacity and ROS-dependent antibacterial effects on bacteria or immunocytes, which leads to uncontrolled and poor diabetic wound healing. Hence, a new class of multifunctional PtCuTe nanosheets with excellent catalytic, ROS-independent antibacterial, proangiogenic, anti-inflammatory, and immuno-modulatory properties for boosting the diabetic wound healing, is reported. The PtCuTe nanosheets show stronger ROS scavenging capacity and better antibacterial effects than PtCu. It is also revealed that the PtCuTe can enhance vascular tube formation, stimulate macrophage polarization toward the M2 phenotype and improve fibroblast mobility, outperforming conventional PtCu. Moreover, PtCuTe promotes crosstalk between different cell types to form a positive feedback loop. Consequently, PtCuTe stimulates a proregenerative environment with relevant cell populations to ensure normal tissue repair. Utilizing a diabetic mouse model, it is demonstrated that PtCuTe significantly facilitated the regeneration of highly vascularized skin, with the percentage of wound closure being over 90% on the 8th day, which is the best among the reported comparable multifunctional biomaterials.


Assuntos
Diabetes Mellitus , Cicatrização , Animais , Camundongos , Espécies Reativas de Oxigênio , Pele , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Materiais Biocompatíveis/farmacologia , Hidrogéis
9.
Front Cell Dev Biol ; 11: 1289063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020909

RESUMO

Objective: The aim of this study was to analyze and compare the differential expression of peptides within the follicular fluid of polycystic ovary syndrome (PCOS) patients versus normal women by using peptidomics techniques. The underlying mechanisms involved in PCOS pathogenesis will be explored, together with screening and identification of potential functional peptides via bioinformatics analysis. Materials and methods: A total of 12 patients who underwent in vitro fertilization and embryo transfer (IVF-ET) at the Reproductive Medicine Center of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine from 1 September 2022 to 1 November 2022 were included in this study. The follicular fluid of PCOS patients (n = 6) and normal women (n = 6) were collected. The presence and concentration differences of various peptides were detected by the LC-MS/MS method. GO and KEGG analysis were performed on the precursor proteins of the differentially-expressed peptides, and protein network interaction analysis was carried out to identify functionally-relevant peptides among the various peptides. Results: A variety of peptides within the follicular fluid of PCOS versus normal patients were detected by peptidomics techniques. Altogether, 843 upregulated peptides and 236 downregulated peptides were detected (absolute fold change ≥2 and p < 0.05). Of these, 718 (718 = 488 + 230) peptides were only detected in the PCOS group, while 205 (205 = 174 + 31) were only detected in the control group. Gene Ontology enrichment and pathway analysis were performed to characterize peptides through their precursor proteins. We identified 18 peptides from 7 precursor proteins associated with PCOS, and 4 peptide sequences were located in the functional domains of their corresponding precursor proteins. Conclusion: In this study, differences in the follicular development of PCOS versus normal patients were revealed from the polypeptidomics of follicular development, which thus provided new insights for future studies on the pathological mechanisms of PCOS development.

10.
Front Bioeng Biotechnol ; 11: 1217919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533694

RESUMO

Introduction: Chirality is a crucial mechanical cue within the extracellular matrix during tissue repair and regeneration. Despite its key roles in cell behavior and regeneration efficacy, our understanding of chirality-biased protein profile in vivo remains unclear. Methods: In this study, we characterized the proteomic profile of proteins extracted from bone defect areas implanted with left-handed and right-handed scaffold matrices during the early healing stage. We identified differentially-expressed proteins between the two groups and detected heterogenic characteristic signatures on day 3 and day 7 time points. Results: Proteomic analysis showed that left-handed chirality could upregulate cell adhesion-related and GTPase-related proteins on day 3 and day 7. Besides, interaction analysis and in vitro verification results indicated that the left-handed chiral scaffold material activated Rho GTPase and Akt1, ultimately leading to M2 polarization of macrophages. Discussion: In summary, our study thus improved understanding of the regenerative processes facilitated by chiral materials by characterizing the protein atlas in the context of bone defect repair and exploring the underlying molecular mechanisms of chirality-mediated polarization differences in macrophages.

11.
Adv Sci (Weinh) ; 10(30): e2303207, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639212

RESUMO

Tissue-infiltrating neutrophils (TINs) secrete various signaling molecules to establish paracrine communication within the inflammatory milieu. It is imperative to identify molecular mediators that control this secretory phenotype of TINs. The present study uncovers a secretory neutrophil subset that exhibits increased pro-inflammatory cytokine production and enhanced migratory capacity which is highly related with periodontal pathogenesis. Further analysis identifies the OTU domain-containing protein 1 (OTUD1) plays a regulatory role in this secretory neutrophil polarization. In human and mouse periodontitis, the waning of inflammation is correlated with OTUD1 upregulation, whereas severe periodontitis is induced when neutrophil-intrinsic OTUD1 is depleted. Mechanistically, OTUD1 interacts with SEC23B, a component of the coat protein II complex (COPII). By removing the K63-linked polyubiquitin chains on SEC23B Lysine 81, the deubiquitinase OTUD1 negatively regulates the COPII secretory machinery and limits protein ER-to-Golgi trafficking, thus restricting the surface expression of integrin-regulated proteins, CD9 and CD47. Accordingly, blockade of protein transport by Brefeldin A (BFA) curbs recruitment of Otud1-deficient TINs and attenuates inflammation-induced alveolar bone destruction. The results thus identify OTUD1 signaling as a negative feedback loop that limits the polarization of neutrophils with secretory phenotype and highlight the potential application of BFA in the treatment of periodontal inflammation.


Assuntos
Neutrófilos , Periodontite , Animais , Humanos , Camundongos , Enzimas Desubiquitinantes , Inflamação , Neutrófilos/metabolismo , Transporte Proteico , Proteases Específicas de Ubiquitina/metabolismo
12.
Nat Commun ; 14(1): 4091, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429900

RESUMO

For bone defect repair under co-morbidity conditions, the use of biomaterials that can be non-invasively regulated is highly desirable to avoid further complications and to promote osteogenesis. However, it remains a formidable challenge in clinical applications to achieve efficient osteogenesis with stimuli-responsive materials. Here, we develop polarized CoFe2O4@BaTiO3/poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] core-shell particle-incorporated composite membranes with high magnetoelectric conversion efficiency for activating bone regeneration. An external magnetic field force conduct on the CoFe2O4 core can increase charge density on the BaTiO3 shell and strengthens the ß-phase transition in the P(VDF-TrFE) matrix. This energy conversion increases the membrane surface potential, which hence activates osteogenesis. Skull defect experiments on male rats showed that repeated magnetic field applications on the membranes enhanced bone defect repair, even when osteogenesis repression is elicited by dexamethasone or lipopolysaccharide-induced inflammation. This study provides a strategy of utilizing stimuli-responsive magnetoelectric membranes to efficiently activate osteogenesis in situ.


Assuntos
Compostos de Bário , Materiais Biocompatíveis , Masculino , Animais , Ratos , Membranas , Regeneração Óssea
13.
Am J Transl Res ; 15(5): 3759-3765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303625

RESUMO

OBJECTIVES: To analyze the correlation between age and sperm DNA fragmentation index (DFI), and determine whether the number of eggs retrieved from the female partner was associated with the impact of sperm DFI on clinical pregnancy rates. METHODS: A retrospective analysis of 896 couples aged 19-58 years who were treated at our hospital between 2019 and 2021 was performed to analyse male semen parameters and to investigate the correlation between male age, semen parameters and DFI. In total, data from 330 cycles of assisted reproduction in couples over 40 years of age were analyzed, including 66 cycles with a normal DFI (≤ 15) and 264 cycles with an abnormal DFI (> 15), so as to correlate clinical outcomes based on the number of eggs retrieved per woman and DFI. In order to identify factors associated with clinical outcomes, logistic regression analysis was carried out. RESULTS: There was no significant decrease in semen parameters (motility and concentration) with increasing age of the male partner (P > 0.05). DFI was positively correlated with male age and was significantly higher when age was ≥ 40 years (P = 0.002). A lower number of eggs retrieved (< 4) led to a reduced clinical pregnancy rate; with similar outcomes being found for a reduction in DFI. CONCLUSION: When male partner age exceeded 40 years, both the DFI and the number of eggs retrieved affected the clinical pregnancy rate.

14.
Tissue Eng Part B Rev ; 29(5): 545-557, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37183418

RESUMO

Organoids are widely considered to be ideal in vitro models that have been widely applied in many fields, including regenerative medicine, disease research and drug screening. It is distinguished from other three-dimensional in vitro culture model systems by self-organization and sustainability in long-term culture. The three core components of organoid culture are cells, exogenous factors, and culture matrix. Due to the complexity of bone tissue, and heterogeneity of osteogenic stem/progenitor cells, it is challenging to construct organoids for modeling skeletal systems. In this study, we examine current progress in the development of skeletal system organoid culture systems and analyze the current research status of skeletal stem cells, their microenvironmental factors, and various potential organoid culture matrix candidates to provide cues for future research trajectory in this field. Impact Statement The emergence of organoids has brought new opportunities for the development of many biomedical fields. The bone organoid field still has much room for exploration. This review discusses the characteristics distinguishing organoids from other three-dimensional model systems and examines current progress in the organoid production of skeletal systems. In addition, based on core elements of organoid cultures, three main problems that need to be solved in bone organoid generation are further analyzed. These include the heterogeneity of skeletal stem cells, their microenvironmental factors, and potential organoid culture matrix candidates. This information provides direction for the future research of bone organoids.

15.
ACS Appl Mater Interfaces ; 15(23): 27486-27501, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37212747

RESUMO

Currently, healing of large bone defects faces significant challenges such as a bulk of bone regeneration and revascularization on the bone defect region. Here, a "cell-free scaffold engineering" strategy that integrates strontium (Sr) and highly bioactive serum exosomes (sEXOs) inside a three-dimensional (3D)-printed titanium (Ti) scaffold (Sc) is first developed. The constructed SrTi Sc can serve as a sophisticated biomaterial platform for maintaining bone morphological characteristics of the radius during the period of critical bone defect (CBD) repair and further accelerating bone formation and fibroblastic suppression via the controlled release of Sr from the superficial layer of the scaffold. Moreover, compared with sEXO from healthy donors, the sEXO extracted from the serum of the femoral fracture rabbit model at the stage of fracture healing, named BF EXO, is robustly capable of facilitating osteogenesis and angiogenesis. In addition, the underlying therapeutic mechanism is elucidated, whereby altering miRNAs shuttled by BF EXO enables osteogenesis and angiogenesis. Further, the in vivo study revealed that the SrTi Sc + BF EXO composite dramatically accelerated bone repair via osteoconduction, osteoinduction, and revascularization in radial CBD of rabbits. This study broadens the source and biomedical potential of specifically functionalized exosomes and provides a comprehensive clinically feasible strategy for therapeutics on large bone defects.


Assuntos
Exossomos , Osteogênese , Animais , Coelhos , Titânio/farmacologia , Estrôncio/farmacologia , Regeneração Óssea , Alicerces Teciduais , Consolidação da Fratura , Impressão Tridimensional
16.
Animal Model Exp Med ; 6(2): 120-130, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856186

RESUMO

Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries, as well as improving the design and fabrication of scaffold implants for bone tissue engineering. The bioelectrical properties of bone tissue can be attributed to the interaction of its various cell lineages (osteocyte, osteoblast and osteoclast) with the surrounding extracellular matrix, in the presence of various biomechanical stimuli arising from routine physical activities; and is best described as a combination and overlap of dielectric, piezoelectric, pyroelectric and ferroelectric properties, together with streaming potential and electro-osmosis. There is close interdependence and interaction of the various electroactive and electrosensitive components of bone tissue, including cell membrane potential, voltage-gated ion channels, intracellular signaling pathways, and cell surface receptors, together with various matrix components such as collagen, hydroxyapatite, proteoglycans and glycosaminoglycans. It is the remarkably complex web of interactive cross-talk between the organic and non-organic components of bone that define its electrophysiological properties, which in turn exerts a profound influence on its metabolism, homeostasis and regeneration in health and disease. This has spurred increasing interest in application of electroactive scaffolds in bone tissue engineering, to recapitulate the natural electrophysiological microenvironment of healthy bone tissue to facilitate bone defect repair.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Engenharia Tecidual , Osso e Ossos , Durapatita
17.
Front Bioeng Biotechnol ; 11: 1161192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923463

RESUMO

Introduction: Achieving a successful reconstruction of alveolar bone morphology still remains a challenge because of the irregularity and complex microenvironment of tooth sockets. Biological materials including hydroxyapatite and collagen, are used for alveolar ridge preservation. However, the healing effect is often unsatisfactory. Methods: Inspired by superwetting biomimetic materials, we constructed a 3D actively-spreading bone repair material. It consisted of photocurable polyether F127 diacrylate hydrogel loaded with mixed spheroids of mesenchymal stem cells (MSCs) and vascular endothelial cells (ECs). Results: Biologically, cells in the spheroids were able to spread and migrate outwards, and possessed both osteogenic and angiogenic potential. Meanwhile, ECs also enhanced osteogenic differentiation of MSCs. Mechanically, the excellent physical properties of F127DA hydrogel ensured that it was able to be injected directly into the tooth socket and stabilized after light curing. In vivo experiments showed that MSC-EC-F127DA system promoted bone repair and preserved the shape of alveolar ridge within a short time duration. Discussion: In conclusion, the novel photocurable injectable MSC-EC-F127DA hydrogel system was able to achieve three-dimensional tissue infiltration, and exhibited much therapeutic potential for complex oral bone defects in the future.

18.
J Mater Chem B ; 11(12): 2789, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36891875

RESUMO

Correction for 'Restoring the electrical microenvironment using ferroelectric nanocomposite membranes to enhance alveolar ridge regeneration in a mini-pig preclinical model' by Yiping Li et al., J. Mater. Chem. B, 2023, 11, 985-997, https://doi.org/10.1039/D2TB02054H.

19.
Adv Mater ; 35(24): e2209769, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934418

RESUMO

The heterogeneity of extracellular matrix (ECM) topology, stiffness, and architecture is a key factor modulating cellular behavior and osteogenesis. However, the effects of heterogeneous ECM electric potential at the micro- and nanoscale on osteogenesis remain to be elucidated. Here, the heterogeneous distribution of surface potential is established by incorporating ferroelectric BaTiO3 nanofibers (BTNF) into poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix based on phase-field and first-principles simulation. By optimizing the aspect ratios of BTNF fillers, the anisotropic distribution of surface potential on BTNF/P(VDF-TrFE) nanocomposite membranes can be achieved by strong spontaneous electric polarization of BTNF fillers. These results indicate that heterogeneous surface potential distribution leads to a meshwork pattern of fibronectin (FN) aggregation, which increased FN-III7-10 (FN fragment) focal flexibility and anchor points as predicted by molecular dynamics simulation. Furthermore, integrin clustering, focal adhesion formation, cell spreading, and adhesion are enhanced sequentially. Increased traction of actin fibers amplifies mechanotransduction by promoting nuclear translocation of YAP/Runx2, which enhances osteogenesis in vitro and bone regeneration in vivo. The work thus provides fundamental insights into the biological effects of surface potential heterogeneity at the micro- and nanoscale on osteogenesis, and also develops a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.


Assuntos
Mecanotransdução Celular , Osteogênese , Diferenciação Celular , Regeneração Óssea , Fibronectinas/farmacologia
20.
Adv Mater ; 35(19): e2210637, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36756993

RESUMO

Current functional assessment of biomaterial-induced stem cell lineage fate in vitro mainly relies on biomarker-dependent methods with limited accuracy and efficiency. Here a "Mesenchymal stem cell Differentiation Prediction (MeD-P)" framework for biomaterial-induced cell lineage fate prediction is reported. MeD-P contains a cell-type-specific gene expression profile as a reference by integrating public RNA-seq data related to tri-lineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) of human mesenchymal stem cells (hMSCs) and a predictive model for classifying hMSCs differentiation lineages using the k-nearest neighbors (kNN) strategy. It is shown that MeD-P exhibits an overall accuracy of 90.63% on testing datasets, which is significantly higher than the model constructed based on canonical marker genes (80.21%). Moreover, evaluations of multiple biomaterials show that MeD-P provides accurate prediction of lineage fate on different types of biomaterials as early as the first week of hMSCs culture. In summary, it is demonstrated that MeD-P is an efficient and accurate strategy for stem cell lineage fate prediction and preliminary biomaterial functional evaluation.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Humanos , Linhagem da Célula , Materiais Biocompatíveis/metabolismo , Inteligência Artificial , Diferenciação Celular/genética , Osteogênese , Aprendizado de Máquina , Condrogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA