Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14842, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908168

RESUMO

Switchgrass (Panicum virgatum L.) is an important crop for biofuel production but it also serves as host for greenbugs (Schizaphis graminum Rondani; GB). Although transcriptomic studies have been done to infer the molecular mechanisms of plant defense against GB, little is known about the effect of GB infestation on the switchgrass protein expression and phosphorylation regulation. The global response of the switchgrass cultivar Summer proteome and phosphoproteome was monitored by label-free proteomics shotgun in GB-infested and uninfested control plants at 10 days post infestation. Peptides matching a total of 3,594 proteins were identified and 429 were differentially expressed proteins in GB-infested plants relative to uninfested control plants. Among these, 291 and 138 were up and downregulated by GB infestation, respectively. Phosphoproteome analysis identified 310 differentially phosphorylated proteins (DP) from 350 phosphopeptides with a total of 399 phosphorylated sites. These phosphopeptides had more serine phosphorylated residues (79%), compared to threonine phosphorylated sites (21%). Overall, KEGG pathway analysis revealed that GB feeding led to the enriched accumulation of proteins important for biosynthesis of plant defense secondary metabolites and repressed the accumulation of proteins involved in photosynthesis. Interestingly, defense modulators such as terpene synthase, papain-like cysteine protease, serine carboxypeptidase, and lipoxygenase2 were upregulated at the proteome level, corroborating previously published transcriptomic data.


Assuntos
Afídeos , Herbivoria , Panicum/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Animais , Regulação da Expressão Gênica de Plantas , Fosforilação , Fotossíntese , Transcriptoma
2.
Insect Biochem Mol Biol ; 118: 103285, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31760137

RESUMO

Insecticides are a key tool in the management of many insect pests of agriculture, including soybean aphids. The selection imposed by insecticide use has often lead to the evolution of resistance by the target pest through enhanced detoxification mechanisms. We hypothesised that exposure of insecticide-susceptible aphids to sublethal doses of insecticides would result in the up-regulation of genes involved in detoxification of insecticides, revealing the genes upon which selection might act in the field. We used the soybean aphid biotype 1 reference genome, version 6.0 as a reference to analyze RNA-Seq data. We identified multiple genes with potential detoxification roles that were up-regulated 12 h after sublethal exposure to esfenvalerate or thiamethoxam. However, these genes were part of a dramatic burst of differential gene expression in which thousands of genes were up- or down-regulated, rather than a defined response to insecticides. Interestingly, the transcriptional burst observed at 12 h s declined dramatically by 24-hrs post-exposure, suggesting a general stress response that may become fine-tuned over time.


Assuntos
Afídeos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Genes de Insetos/efeitos dos fármacos , Inseticidas/metabolismo , Nitrilas/metabolismo , Piretrinas/metabolismo , Tiametoxam/metabolismo , Animais , Afídeos/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
3.
Sci Rep ; 8(1): 15148, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310120

RESUMO

Plant resistance can provide effective, economical, and sustainable pest control. Tolerance to the soybean aphid has been identified and confirmed in the soybean KS4202. Although its resistance mechanisms are not fully understood, evidence suggests that enhanced detoxification of reactive oxygen species (ROS) is an active system under high aphid infestation. We further explored tolerance by evaluating the differences in constitutive and aphid-induced defenses in KS4202 through the expression of selected defense-related transcripts and the levels of the phytohormones abscisic acid (ABA), jasmonic acid (JA), JA-isoleucine (JA-Ile), cis-(+)-12-oxo-phytodienoic acid (OPDA), and salicylic acid (SA) over several time points. Higher constitutive levels of ABA and JA, and basal expression of ABA- and JA-related transcripts were found in the tolerant genotype. Conversely, aphid-induced defenses in KS4202 were expressed as an upregulation of peroxidases under prolonged aphid infestation (>7 days). Our results point at the importance of phytohormones in constitutive defense in KS4202 tolerance to the soybean aphid. Understanding the underlying mechanisms of tolerance will assist breeding for soybean with these traits, and perhaps help extend the durability of Rag (Resistance to Aphis glycines)-mediated resistance genes.


Assuntos
Ácido Abscísico/metabolismo , Afídeos , Ciclopentanos/metabolismo , Glycine max/fisiologia , Glycine max/parasitologia , Interações Hospedeiro-Parasita , Oxilipinas/metabolismo , Animais , Biomarcadores , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo
4.
J Econ Entomol ; 110(5): 2100-2108, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961855

RESUMO

The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an invasive species from Asia that has been the major economic insect pest of soybeans, Glycine max (L.) Merrill, since 2000. While use of soybeans expressing antibiosis and antixenosis is a well-studied strategy to manage this pest, aphid-tolerant soybeans remain underexplored. This study examined the relationship between cumulative aphid-days (CAD) and yield loss in the tolerant soybean KS4202 during two growing seasons to determine the economic injury levels (EILs) for soybean aphids on KS4202. Soybean aphid infestations were initiated during the soybean reproductive stages. A range of CAD treatments (3,000-45,000 CADs) were applied during the growing seasons. Aphid populations reached 45,000 CAD in 2011 and 38,000 CAD in 2013 in plots that were not treated with insecticides. It was estimated that the population doubling time was 9.4 d. In infested plots, soybean yield was reduced by 1.4-13.3%, equivalent to a 3.1% yield loss for every 10,000 CAD. Overall, most CAD treatments did not affect yield parameters, although CAD > 39,000 caused a significant reduction in most yield parameters. The EILs calculated for KS4202 ranged from 526 to 2,050 aphids/plant, which were approximately 2.5-fold higher when compared to EILs previously calculated for susceptible soybean. The adoption of soybean aphid tolerant soybean with higher EILs may help mitigate treatment delay problems by lengthening the treatment lead-time and possibly reduce the number of insecticide applications.


Assuntos
Agricultura/economia , Afídeos , Glycine max/genética , Animais , Densidade Demográfica
5.
Gene ; 599: 68-77, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27838454

RESUMO

Schizaphis graminum (green bug; GB) and Sipha flava (yellow sugarcane aphid; YSA) are two cereal aphid species with broad host ranges capable of establishing on sorghum (Sorghum bicolor) and several switchgrass (Panicum virgatum) cultivars. Switchgrass and sorghum are staple renewable bioenergy crops that are vulnerable to damage by aphids, therefore, identifying novel targets to control aphids has the potential to drastically improve yields and reduce losses in these bioenergy crops. Despite the wealth of genomic and transcriptomic information available from a closely related model aphid species, the pea aphid (Acyrthosiphon pisum), similar genomic information, including the identification of small RNAs, is still limited for GB and YSA. Deep sequencing of miRNAs expressed in GB and YSA was conducted and 72 and 56 miRNA candidates (including 14 and eight novel) were identified, respectively. Of the identified miRNAs, 45 were commonly expressed in both aphid species. Further, plant derived miRNAs were also detected in both aphid samples, including 13 (eight known and five novel) sorghum miRNAs and three (novel) barley miRNAs. In addition, potential aphid gene targets for the host plant-derived miRNAs were predicted. The establishment of miRNA repertoires in these two aphid species and the detection of plant-derived miRNA in aphids will ultimately lead to a better understanding of the role of miRNAs in regulating gene expression networks in these two aphids and the potential roles of plant miRNAs in mediating plant-insect interactions.


Assuntos
Afídeos/genética , MicroRNAs/genética , RNA de Plantas/genética , Animais , Afídeos/patogenicidade , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Hordeum/genética , Hordeum/parasitologia , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Parasita/genética , MicroRNAs/química , MicroRNAs/isolamento & purificação , Conformação de Ácido Nucleico , Panicum/parasitologia , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , Saccharum/parasitologia , Sorghum/genética , Sorghum/parasitologia
6.
Pest Manag Sci ; 72(6): 1099-109, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26373258

RESUMO

BACKGROUND: Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. RESULTS: Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. CONCLUSIONS: This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. © 2015 Society of Chemical Industry.


Assuntos
4-Butirolactona/análogos & derivados , Glycine max/metabolismo , Guanidinas/farmacocinética , Imidazóis/farmacocinética , Inseticidas/farmacocinética , Nitrocompostos/farmacocinética , Piridinas/farmacocinética , Sementes/metabolismo , Tiazóis/farmacocinética , 4-Butirolactona/farmacocinética , Neonicotinoides , Solo/química , Água/análise
7.
J Vet Diagn Invest ; 27(1): 25-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25387845

RESUMO

New World screwworms, Cochliomyia hominivorax (Coquerel, 1858), were once devastating pests of warm-blooded animals in the United States before they were successfully eradicated using the sterile insect technique. Guarding against the introduction of screwworms to North America or any other screwworm-free area relies on rapid, reliable identification of suspected cases. In the current study, the DNA from excised markers generated by randomly amplified polymorphic DNA polymerase chain reaction was used as the basis to generate 2 species-specific sequence-characterized amplified region molecular markers. Resulting primer pairs, named CR92A1 and J1A2 (each with forward and reverse components), produced amplicons of 852 and 848 base pairs, respectively. The 2 primer pairs successfully discriminated between C. hominivorax, Cochliomyia macellaria (Fabricius, 1775), 8 other species of blowflies, 3 noncalliphorid dipterans, and 1 nondipteran outlier. These primers may become important tools for veterinary laboratories and the screwworm eradication and exclusion program for rapid identification or verification of suspicious larval samples in presumed outbreaks.


Assuntos
Dípteros/classificação , Dípteros/genética , Genoma de Inseto , Animais , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/veterinária , Técnica de Amplificação ao Acaso de DNA Polimórfico/veterinária , Análise de Sequência de DNA/veterinária , Especificidade da Espécie
8.
BMC Genomics ; 15: 1055, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25467808

RESUMO

BACKGROUND: Neonicotinoid insecticides are widely known for their broad-spectrum control of arthropod pests. Recently, their effects on plant physiological mechanisms have been characterized as producing a stress shield, which is predicted to enhance tolerance to adverse conditions. Here we investigate the molecular underpinnings of the stress shield concept using the neonicotinoid thiamethoxam in two separate experiments that compare gene expression. We hypothesized that the application of a thiamethoxam seed treatment to soybean would alter the expression of genes involved in plant defensive pathways and general stress response in later vegetative growth. First, we used next-generation sequencing to examine the broad scale transcriptional effects of the thiamethoxam seed treatment at three vegetative stages in soybean. Second, we selected ten target genes associated with plant defense pathways in soybean and examined the interactive effects of thiamethoxam seed treatment and drought stress on expression using qRT-PCR. RESULTS: Direct comparison of thiamethoxam-treated and untreated soybeans revealed minor transcriptional differences. However, when examined across vegetative stages, the thiamethoxam seed treatment induced substantial transcriptional changes that were not observed in untreated plants. Genes associated with photosynthesis, carbohydrate and lipid metabolism, development of the cell wall and membrane organization were uniquely upregulated between vegetative stages in thiamethoxam-treated plants. In addition, several genes associated with phytohormone and oxidative stress responses were downregulated between vegetative stages. When we examined the expression of a subset of ten genes associated with plant defense and stress response, the application of thiamethoxam was found to interact with drought stress by enhancing or repressing expression. In drought stressed plants, thiamethoxam induced (upregulated) expression of a thiamine biosynthetic enzyme (THIZ2) and gibberellin regulated protein (GRP), but repressed (downregulated) the expression of an apetala 2 (GmDREB2A;2), lipoxygenase (LIP), and SAM dependent carboxyl methyltransferase (SAM). CONCLUSIONS: We found evidence that a thiamethoxam seed treatment alters the expression soybean genes related to plant defense and stress response both in the presence and absence of drought stress. Consistent with the thiamethoxam stress shield concept, several genes associated with phytohormones showed enhanced expression in drought stressed plants.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Glycine max/genética , Nitrocompostos/farmacologia , Oxazinas/farmacologia , Sementes/efeitos dos fármacos , Sementes/genética , Estresse Fisiológico/genética , Tiazóis/farmacologia , Transcrição Gênica , Biomassa , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Neonicotinoides , Reprodutibilidade dos Testes , Sementes/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Tiametoxam
9.
G3 (Bethesda) ; 5(2): 261-70, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25538100

RESUMO

Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids.


Assuntos
Afídeos/genética , Estresse Fisiológico/genética , Animais , Genes de Insetos , Análise de Sequência de RNA , Transcriptoma
10.
J Econ Entomol ; 107(1): 424-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24665729

RESUMO

Switchgrass, Panicum virgatum L., is being developed as a bioenergy feedstock. The potential for large-scale production has encouraged its evaluation as a host for important grass pests. Eight no-choice studies were performed for two developmental stages of two switchgrass cultivars ('Kanlow' and'Summer') and two experimental strains, K x S, and S x K produced by reciprocal mating of these cultivars followed by selection for high yield. Plants were evaluated for host suitability and damage differences to herbivory by four important cereal aphids, Sipha flava (Forbes), Schizaphis graminum (Rondani) (biotype I), Rhopalosiphum padi (L.), and Diuraphis noxia (Mordvilko). All switchgrasses were found to be unsuitable feeding and reproductive hosts to R. padi and D. noxia, which were unable to establish on the plants. However, both S. flava and S. graminum were able to establish on all switchgrasses tested. Differential levels of resistance to S. flava and S. graminum were detected among the switchgrasses by both cumulative aphid days (CAD) and plant damage ratings. Kanlow was consistently rated as highly resistant based on CAD and damage ratings for both aphid species, while Summer was consistently among the most susceptible to both aphids at both developmental stages, with relatively high damage ratings. The resistance of the K x S and S x K populations in relationship to their Summer and Kanlow parents indicted that they inherited some resistance to S. graminum and S. flava from their Kanlow parent. These studies provide valuable baseline information concerning the host suitability of switchgrass to four cereal aphids and the plant-insect interactions within a system that has been largely overlooked and indicate that there are genetic differences among switchgrass populations for resistance to some insects.


Assuntos
Afídeos , Herbivoria , Panicum , Animais , Biocombustíveis
11.
Front Plant Sci ; 4: 549, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24427165

RESUMO

Switchgrass (Panicum virgatum L) is perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season. Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter classes in the tetraploid switchgrass genome. Expression patterns were determined for many of these genes using publically available transcriptomic datasets obtained from both greenhouse and field grown plants. Certain transporters showed strong temporal patterns of expression in distinct developmental stages of the plant. Gene-expression was verified for selected transporters using qRT-PCR. By and large these analyses confirmed the developmental stage-specific expression of these genes. Mineral analyses indicated that K, Fe, Mg, Co, and As had a similar pattern of accumulation with apparent limited remobilization at the end of the growing season. These initial analyses will serve as a foundation for more detailed examination of the nutrient biology of switchgrass.

12.
Pest Manag Sci ; 69(2): 285-91, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22933384

RESUMO

BACKGROUND: Neonicotinoid insecticides are generally efficacious against many turfgrass pests, including several important phloem-feeding insects. However, inconsistencies in control of western chinch bugs, Blissus occiduus, have been documented in field efficacy studies. This research investigated the efficacy of three neonicotinoid insecticides (clothianidin, imidacloprid and thiamethoxam) against B. occiduus in buffalograss under field conditions and detected statistically significant differences in B. occiduus numbers among treatments. A subsequent study documented the relative quantity and degradation rate of these insecticides in buffalograss systemic leaf tissues, using HPLC. RESULTS: Neonicotinoid insecticides initially provided significant reductions in B. occiduus numbers, but mortality diminished over the course of the field studies. Furthermore, while all three neonicotinoids were present in the assayed buffalograss leaf tissues, imidacloprid concentrations were significantly higher than those of clothianidin and thiamethoxam. Over the course of the 28 day study, thiamethoxam concentrations declined 700-fold, whereas imidacloprid and clothianidin declined only 70-fold and 60-fold respectively. CONCLUSIONS: Field studies continued to verify inconsistencies in B. occiduus control with neonicotinoid insecticides. This is the first study to document the relative concentrations of topically applied neonicotinoid insecticides in buffalograss systemic leaf tissues.


Assuntos
Heterópteros/efeitos dos fármacos , Imidazóis/toxicidade , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Poaceae/parasitologia , Animais , Controle de Insetos , Neonicotinoides , Doenças das Plantas/parasitologia , Folhas de Planta/parasitologia
13.
J Econ Entomol ; 104(6): 2073-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22299373

RESUMO

Fifteen buffalograss, Buchloe dactyloides (Nutt.) Engelm, genotypes and 94 diploid full-sib progeny were evaluated for western chinch bug, Blissus occiduus Barber (Hemiptera: Lygaeidae), resistance in two separate studies. The experimental design for each study was a completely randomized design. Adult chinch bugs were introduced onto caged single clone genotypes and progeny in the greenhouse. Chinch bug damage was assessed using a 1-5 visual damage rating scale with 1 = < or = 10%; 2 = 11-30%; 3 = 31-50%; 4 = 51-70%; and 5 = > or = 70% of the buffalograss leaf area with severe discoloration, or dead tissue. Highly significant differences were found among the genotypes and progeny for chinch bug damage. Among the genotypes, Legacy, Prestige, 184, 196, Bowie, NE 3297, NE 2769, and NE 2768 were moderately resistant with damage ratings of > 1, but < 3, while NE 2990, NE 2838, and 1-57-19 were moderately susceptible with damage ratings of > or = 3, but < 4. Among the progeny, one progeny (MP45) was highly resistant with a chinch bug damage rating of 1.0, 78 progeny (83%) had moderate resistance, with damage ratings of > 1.0 and < 3.0, 13 progeny (14%) were moderately susceptible with damage ratings ranging from 3.0 to 3.9, while only two were highly susceptible with damage ratings of > or = 4.0. The significant variability among genotypes and progeny for chinch bug resistance indicates the ability to improve buffalograss resistance to chinch bugs through selection or hybridization of selected genotypes.


Assuntos
Hemípteros/fisiologia , Poaceae/genética , Animais , Preferências Alimentares , Genótipo , Hibridização Genética , Ninfa , Poaceae/fisiologia , Distribuição Aleatória
14.
Theor Appl Genet ; 118(7): 1309-19, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19229513

RESUMO

Developing a better understanding of associations among ploidy level, geographic distribution, and genetic diversity of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to: (1) determine ploidy analysis of Cynodon accessions collected from Turkey, (2) investigate associations between ploidy level and diversity, (3) determine whether geographic and ploidy distribution are related to nuclear genome variation, and (4) correlate among four nuclear molecular marker systems for Cynodon accessions' genetic analyses. One hundred and eighty-two Cynodon accessions collected in Turkey from an area south of the Taurus Mountains along the Mediterranean cost and ten known genotypes were genotyped using sequence related amplified polymorphism (SRAP), peroxidase gene polymorphism (POGP), inter-simple sequence repeat (ISSR), and random amplified polymorphic DNA (RAPD). The diploids, triploids, tetraploids, pentaploids, and hexaploids revealed by flow cytometry had a linear present band frequency of 0.36, 0.47, 0.49, 0.52, and 0.54, respectively. Regression analysis explained that quadratic relationship between ploidy level and band frequency was the most explanatory (r = 0.62, P < 0.001). The AMOVA results indicated that 91 and 94% of the total variation resided within ploidy level and provinces, respectively. The UPGMA analysis suggested that commercial bermudagrass cultivars only one-third of the available genetic variation. SRAP, POGP, ISSR, and RAPD markers differed in detecting relationships among the bermudagrass genotypes and rare alleles, suggesting more efficiency of combinatory analysis of molecular marker systems. Elucidating Cynodon accessions' genetic structure can aid to enhance breeding programs and broaden genetic base of commercial cultivars.


Assuntos
Cynodon/genética , Marcadores Genéticos , Variação Genética , Poliploidia , Evolução Biológica , Cynodon/classificação , DNA de Plantas/análise , DNA de Plantas/genética , Genética Populacional , Região do Mediterrâneo , Filogenia , Polimorfismo Genético , Turquia
15.
J Econ Entomol ; 101(2): 533-40, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18459421

RESUMO

The western chinch bug, Blissus occiduus Barber, has been documented as one of the most serious pests of buffalograss, Buchloë dactyloides (Nuttall) Engelmann, and zoysiagrass, Zoysia japonica Steudel, grown for turf in midwestern states. Resistance to the western chinch bug has been identified in both buffalograsses and zoysiagrasses. Choice and no-choice studies were conducted to determine the categories (antibiosis, antixenosis, and tolerance) of three resistant buffalograsses (PX3-5-1', 196', and 184') and three resistant zoysiagrasses (El Toro, Emerald, and Zorro). Antibiosis studies found no significant differences in survival, nymphal development, or fecundity among the resistant and susceptible buffalograsses or zoysiagrasses, indicating that antibiosis is not an important factor in the resistance. Based on chinch bug damage ratings, 184, 196, and PX3-5-1 have comparable levels of tolerance to the known tolerant buffalograss 'Prestige', and Zorro was the most tolerant zoysiagrass. Choice studies indicated the presence of antixenosis in the buffalograss selection 196 and the zoysiagrass Emerald.


Assuntos
Insetos/fisiologia , Poaceae/parasitologia , Animais , Controle de Insetos
16.
J Econ Entomol ; 100(5): 1692-703, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17972650

RESUMO

We examined the physiological and biochemical responses of resistant ('Halt' and 'Prairie Red') and susceptible ('TAM 107') wheat, Triticum aestivum L., to injury by the Russian wheat aphid, Diuraphis noxia (Mordvilko). Photosynthetic capacity was evaluated by measuring assimilation/internal CO2 (A/Ci) curves, chlorophyll fluorescence, chlorophyll, and nonstructural carbohydrate content. Total protein and peroxidase specific activity also were determined. No significant differences were detected in chlorophyll concentration between aphid-infested and control TAM 107 plants. The aphid-infested resistant cultivars had similar or significantly higher chlorophyll concentrations compared with their respective control plants. Measurements over time showed that infested Halt plants had delays in photosynthetic senescence, Prairie Red plants had photosynthetic rate changes that were similar to control plants, and TAM 107 plants displayed accelerated photosynthetic senescence patterns. The photochemical and nonphotochemical quenching coefficients were significantly higher in infested Halt plants compared with their respective control plants on day 3. Infested TAM 107 plants had significantly higher photochemical quenching compared with control plants at all times evaluated, and they had significantly higher nonphotochemical quenching on day 3. Throughout the experiment, infested Prairie Red plants exhibited photochemical and nonphotochemical quenching coefficient values that were not significantly different from control plants. Total protein content was not significantly different between aphid-infested and control plants for all cultivars. Differences between physiological responses of infested susceptible and resistant cultivars, particularly temporal changes in photosynthetic activity, imply that resistant Halt and Prairie Red wheat tolerate some impacts of aphid injury on photosynthetic integrity.


Assuntos
Afídeos/fisiologia , Triticum/parasitologia , Animais , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Fertilidade , Fluorescência , Cinética , Peroxidase/metabolismo , Fotossíntese , Triticum/metabolismo , Triticum/fisiologia
17.
J Econ Entomol ; 99(1): 212-21, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16573342

RESUMO

Chinch bugs are common pests of many agronomic and horticulturally important crops and turfgrasses. Previous research has indicated that some grasses exhibit resistance to multiple chinch bug species, whereas others are resistant to only one species. The objectives of this research were to document differences in the probing frequencies and locations among Blissus species as well as differences in mouthpart morphology as a first step in understanding the differential responses of grasses to chinch bug feeding. Scanning electron microscopy detected differences in the total lengths of proboscises as well as individual mouthpart segments among the four species studied. Blissus occiduus Barber probed significantly more often on buffalograss, Buchloë dactyloides (Nuttall) Engelmann, than any other plant material. Probing locations of B. occiduus and Blissus leucopterus leucopterus (Say) were similar on both B. occiduus-resistant and susceptible buffalograsses and KS94 sorghum, Sorghum bicolor (L.) Moench (B. occiduus-resistant, B. l. leucopterus-resistant). However, on 'Wheatland' sorghum (B. occiduus-resistant, B. l. leucopterus-susceptible), stylet tracts of B. l. leucopterus most often terminated in the bundle sheath cells, whereas those of B. occiduus generally terminated in the vascular tissues.


Assuntos
Hemípteros/anatomia & histologia , Hemípteros/fisiologia , Poaceae/parasitologia , Animais , Suscetibilidade a Doenças , Comportamento Alimentar/fisiologia , Hemípteros/ultraestrutura , Imunidade Inata , Microscopia Eletrônica de Varredura , Poaceae/citologia , Poaceae/fisiologia , Especificidade da Espécie
18.
J Econ Entomol ; 99(1): 203-11, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16573341

RESUMO

Chinch bugs are common pests of many agronomic and horticulturally important crops and turfgrasses. The extensive overlap of plant hosts and geographic distribution of Blissus leucopterus leucopterus (Say), Blissus leucopterus hirtus Montandon, Blissus insularis Barber, and Blissus occiduus Barber underscores the importance of identifying resistant germplasm. Cool- and warm-season turfgrasses and sorghum, Sorghum bicolor (L.) Moench, were evaluated for resistance to chinch bugs in the Blissus complex, and the presence of multiple resistance was documented. Greenhouse studies established that B. occiduus-resistant ('Prestige', formerly NE91-118) and -susceptible ('378') buffalograsses,, Buchloë dactyloides (Nuttall) Engelmann, were susceptible to all other chinch bug species. KS94 sorghum exhibited resistance to both B. occiduus and B. l. leucopterus, whereas B. insularis-resistant St. Augustinegrass, Stenotaphrum secundatum (Walter) Kuntze ('Floratam'), was also resistant to B. occiduus. B. l. leucopterus-susceptible sorghum ('Wheatland') and B. insularis-susceptible St. Augustinegrasses ('Raleigh' and 'Amerishade') were highly resistant to B. occiduus. Endophyte-free and -enhanced fine fescues (Festuca spp.) were moderately to highly susceptible to B. l. hirtus but moderately to highly resistant to B. occiduus. The results of this research showed the buffalograsses evaluated, including B. occiduus-resistant Prestige, are moderately to highly susceptible to the three other chinch bug species. In contrast, B. occiduus did not cause considerable damage to any of the turfgrasses or sorghum cultivars evaluated, other than buffalograss, irrespective of whether or not they are resistant to another chinch bug species. This information is increasingly important as various grasses become adapted to regions that may possess chinch bug species other than those with which they are typically associated. These levels of Blissus resistance should be included when selecting resistant germplasm for managing Blissus species pests.


Assuntos
Comportamento Apetitivo , Hemípteros/fisiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/imunologia , Poaceae/fisiologia , Animais , Imunidade Inata , Poaceae/crescimento & desenvolvimento , Especificidade da Espécie
19.
J Insect Sci ; 6: 1-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-19537992

RESUMO

The chinch bug, Blissus occiduus Barber (Hemiptera: Blissidae), is an important pest of buffalograss, Buchloë dactyloides (Nutall) Engelmann and potentially other turfgrass, crop, and non-crop hosts. Choice studies documented the number of B. occiduus present on selected turfgrasses, crops and weeds, and provided important insights into the host preferences of this chinch bug. Grasses with the most chinch bugs present included the warm-season turfgrasses B. dactyloides , zoysiagrass, Zoysia japonica Steudel, bermudagrass, Cynodon dactylon (L.) Pers., and St. Augustinegrass, Stenotaphrum secundatum (Walt.) Kuntze. The other grasses tested, green foxtail, Setaria viridis (L.) Beauv, Kentucky bluegrass, Poa pratensis L., perennial ryegrass, Lolium perenne L., rye, Secale cereale L., sorghum, Sorghum bicolor (L.) Moench, tall fescue, Festuca arundinacea Schreb. and wheat Tritium aestivum L. had significantly fewer chinch bugs. Buffalograss and zoysiagrass had the highest numbers of chinch bugs among the warm-season grasses and the buffalograss cultivars '86-120' and 'PX-3-5-1' had more chinch bugs than the zoysiagrass cultivars 'Meyers' and 'El Toro' after the two hour evaluation time.


Assuntos
Hemípteros/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Poaceae/parasitologia , Animais , Feminino , Preferências Alimentares/fisiologia , Masculino
20.
J Econ Entomol ; 97(1): 67-73, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14998128

RESUMO

Blissus occiduus Barber is an important pest of buffalograss, Buchloë dactyloides (Nuttall) Engelmann, turf. No-choice studies documented the susceptibility of selected turfgrasses, crops, and weeds to B. occiduus feeding. Highly to moderately susceptible grasses included buffalograss; yellow Setaria glauca (L.) and green foxtail Setaria viridis (L.); Kentucky bluegrass, Poa pratensis L.; perennial ryegrass, Lolium perenne L.; brome, Bromus spp. Leyss.; zoysiagrass, Zoysia japonica Steudel; Bermuda grass, Cynodon dactylon (L.) Pers.; sorghum, Sorghum bicolor (L.) Moench; tall fescue, Festuca arundinacea Schreb.; and barley Hordeum vulgare (L.). Slightly to nonsusceptible grasses included fine fescue, Festuca ovina hirtula L.; rye, Secale cereale L.; crabgrass Digitaria sanguinalis (L.); bentgrass, Agrostis palustris Huds.; wheat, Tritium aestivun L.; corn, Zea mays L.; fall panicum Panicum dichotomiflorum Michx.; and St. Augustinegrass, Stenotaphrum secundatum (Walt.) Kuntze. The reproductive potential of B. occiduus was also investigated on these same grasses. B. occiduus produced offspring on 15 of the 18 turfgrass, crop, and weed species evaluated. No reproduction occurred on either Bermuda grass or St. Augustinegrass, and buffalograss plants were killed by B. occiduus feeding before offspring could be produced.


Assuntos
Hemípteros/fisiologia , Poaceae , Animais , Ingestão de Alimentos , Hemípteros/crescimento & desenvolvimento , Doenças das Plantas , Sorghum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA