Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cryobiology ; 117: 104960, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39187231

RESUMO

Coral reefs are threatened by various local and global stressors, including elevated ocean temperatures due to anthropogenic climate change. Coral cryopreservation could help secure the diversity of threatened corals. Recently, isochoric vitrification was used to demonstrate that coral fragments lived to 24 hr post-thaw; however, in this study, they were stressed post-thaw. The microbial portion of the coral holobiont has been shown to affect host fitness and the impact of cryopreservation treatment on coral microbiomes is unknown. Therefore, we examined the coral-associated bacterial communities pre- and post-cryopreservation treatments, with a view towards informing potential future stress reduction strategies. We characterized the microbiome of the Hawaiian finger coral, Porites compressa in the wild and at seven steps during the isochoric vitrification process. We observed significant changes in microbiome composition, including: 1) the natural wild microbiomes of P. compressa were dominated by Endozoicomonadaceae (76.5 % relative abundance) and consistent between samples, independent of collection location across Kane'ohe Bay; 2) Endozoicomonadaceae were reduced to <6.9 % in captivity, and further reduced to <0.5 % relative abundance after isochoric vitrification; and 3) Vibrionaceae dominated communities post-thaw (58.5-74.7 % abundance). Thus, the capture and cryopreservation processes, are implicated as possible causal agents of dysbiosis characterized by the loss of putatively beneficial symbionts (Endozoicomonadaceae) and overgrowth of potential pathogens (Vibrionaceae). Offsetting these changes with probiotic restoration treatments may alleviate cryopreservation stress and improve post-thaw husbandry.

2.
PeerJ ; 11: e15723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576514

RESUMO

Anthropogenic stressors threaten reefs worldwide and natural in situ coral reproduction may be inadequate to meet this challenge. Land-based culture can provide increased coral growth, especially with microfragments. We tested whether culture methods using different algal fouling communities could improve the growth and health metrics of microfragments of the Hawaiian coral, Porites compressa. Culture method fouling communities were: (1) similar to a reef environment (Mini Reef); (2) clean tanks managed to promote crustose coralline algae (Clean Start); and (3) tanks curated beforehand with poorly-competing algae (Green Film) assessed in winter and summer months. The Green Film method during the winter produced the fastest microfragment mean growth at 28 days until the first row of new polyps developed, and also the highest tank and plate metric health scores. Time efficient, standardized methods for land-based culture designed to maximize growth and production of coral fragments will contribute considerably to the success of large-scale restoration efforts.


Assuntos
Antozoários , Animais , Recifes de Corais , Havaí , Estações do Ano
3.
Nat Commun ; 14(1): 4859, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612315

RESUMO

Corals are under siege by both local and global threats, creating a worldwide reef crisis. Cryopreservation is an important intervention measure and a vital component of the modern coral conservation toolkit, but preservation techniques are currently limited to sensitive reproductive materials that can only be obtained a few nights per year during spawning. Here, we report the successful cryopreservation and revival of cm-scale coral fragments via mL-scale isochoric vitrification. We demonstrate coral viability at 24 h post-thaw using a calibrated oxygen-uptake respirometry technique, and further show that the method can be applied in a passive, electronics-free configuration. Finally, we detail a complete prototype coral cryopreservation pipeline, which provides a platform for essential next steps in modulating post-thaw stress and initiating long-term growth. These findings pave the way towards an approach that can be rapidly deployed around the world to secure the biological genetic diversity of our vanishing coral reefs.


Assuntos
Antozoários , Isoflavonas , Animais , Vitrificação , Havaí , Criopreservação , Proteínas de Soja
4.
Sci Rep ; 13(1): 246, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604569

RESUMO

Coral reefs worldwide are at risk due to climate change. Coral bleaching is becoming increasingly common and corals that survive bleaching events can suffer from temporary reproductive failure for several years. While water temperature is a key driver in causing coral bleaching, other environmental factors are involved, such as solar radiation. We investigated the individual and combined effects of temperature, photosynthetically active radiation (PAR), and ultraviolet radiation (UVR) on the spawning patterns and reproductive physiology of the Hawaiian mushroom coral Lobactis scutaria, using long-term experiments in aquaria. We examined effects on spawning timing, fertilisation success, and gamete physiology. Both warmer temperatures and filtering UVR altered the timing of spawning. Warmer temperatures caused a drop in fertilisation success. Warmer temperatures and higher PAR both negatively affected sperm and egg physiology. These results are concerning for the mushroom coral L. scutaria and similar reproductive data are urgently needed to predict future reproductive trends in other species. Nonetheless, thermal stress from global climate change will need to be adequately addressed to ensure the survival of reef-building corals in their natural environment throughout the next century and beyond. Until then, reproduction is likely to be increasingly impaired in a growing number of coral species.


Assuntos
Antozoários , Temperatura , Raios Ultravioleta , Animais , Antozoários/fisiologia , Biologia , Mudança Climática , Recifes de Corais , Sementes , Reprodução
5.
Sci Rep ; 12(1): 12255, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851072

RESUMO

Sessile invertebrates often engage in synchronized spawning events to increase likelihood of fertilization. Although coral reefs are well studied, the reproductive behavior of most species and the relative influence of various environmental cues that drive reproduction are not well understood. We conducted a comparative examination of the reproduction of the well-studied Hawaiian coral Montipora capitata and the relatively unknown reproduction of its congener, Montipora flabellata. Both are simultaneous hermaphroditic broadcast spawners that release egg-sperm bundles with external fertilization. Montipora capitata had a distinct reproductive pattern that resulted in coordinated gamete maturation and the synchronized release of thousands of egg-sperm bundles across two spawning pulses tightly coupled to consecutive new moon phases in June and July. Montipora flabellata exhibited a four month reproductive season with spawning that was four-fold less synchronous than M. capitata; its spawning was aperiodic with little linkage to moon phase, a broadly distributed release of only dozens or hundreds of bundles over multiple nights, and a spawning period that ranged from late June through September. The reproductive strategy of M. flabellata might prove detrimental under climate change if increased frequency and severity of bleaching events leave it sparsely populated and local stressors continue to degrade its habitat.


Assuntos
Antozoários , Animais , Recifes de Corais , Havaí , Masculino , Reprodução , Sêmen
6.
PeerJ ; 10: e13112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345587

RESUMO

The drastic decline in coral coverage has stimulated an interest in reef restoration, and various iterations of coral nurseries have been used to augment restoration strategies. Here we examine the growth of two species of Hawaiian Montipora that were maintained in mesocosms under either ambient or warmed annual bleaching conditions for two consecutive years prior to outplanting to determine whether preconditioning aided coral restoration efforts. Using coral trees to create a nearby ocean nursery, we examined whether: (1) previous ex situ mesocosm growth would mirror in situ coral tree nursery growth; and (2) thermal ex situ stress-hardening would predict future success during natural warming events in situ for corals moved from tanks to trees. For Montipora capitata, we found that variation in growth was explained primarily by genotype; growth rates in the mesocosms were similar to those in situ, irrespective of preconditioning. Variation in M. flabellata growth, however, was explained by both genotype and culture method such that an individual M. flabellata colony that grew well in the tanks did not necessarily perform as well on the coral trees. For both species, previous exposure to elevated temperatures in the mesocosms provided no benefit to either growth or survival during a warming event in the coral tree nursery compared to those grown in ambient temperatures. Overall, M. capitata performed better in the tree nursery with higher net growth, lower mortality, and was subject to less predation than M. flabellata. Our results show little benefit of the additional cost and time of stress-hardening these corals prior to outplanting because it is unlikely to aid resilience to future warming events. These results also suggest that selecting corals for restoration based on long-term genotype growth performance may be more effective for optimal outcomes but should be weighed against other factors, such as coral morphology, in situ nursery method, location, and other characteristics.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Havaí , Especificidade da Espécie , Genótipo , Oceanos e Mares
7.
Sci Rep ; 11(1): 12525, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108494

RESUMO

Ocean warming, fueled by climate change, is the primary cause of coral bleaching events which are predicted to increase in frequency. Bleaching is generally damaging to coral reproduction, can be exacerbated by concomitant stressors like ultraviolet radiation (UVR), and can have lasting impacts to successful reproduction and potential adaptation. We compared morphological and physiological reproductive metrics (e.g., sperm motility, mitochondrial membrane integrity, egg volume, gametes per bundle, and fertilization and settlement success) of two Hawaiian Montipora corals after consecutive bleaching events in 2014 and 2015. Between the species, sperm motility and mitochondrial membrane potential had the most disparate results. Percent sperm motility in M. capitata, which declined to ~ 40% during bleaching from a normal range of 70-90%, was still less than 50% motile in 2017 and 2018 and had not fully recovered in 2019 (63% motile). By contrast, percent sperm motility in Montipora spp. was 86% and 74% in 2018 and 2019, respectively. This reduction in motility was correlated with damage to mitochondria in M. capitata but not Montipora spp. A major difference between these species is the physiological foundation of their UVR protection, and we hypothesize that UVR protective mechanisms inherent in Montipora spp. mitigate this reproductive damage.


Assuntos
Antozoários/crescimento & desenvolvimento , Mudança Climática , Reprodução/fisiologia , Motilidade dos Espermatozoides/genética , Animais , Antozoários/genética , Recifes de Corais , Células Germinativas/crescimento & desenvolvimento , Potencial da Membrana Mitocondrial/genética , Oceanos e Mares , Motilidade dos Espermatozoides/fisiologia , Raios Ultravioleta/efeitos adversos
8.
Sci Rep ; 11(1): 61, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420097

RESUMO

The declining reproductive viability of corals threatens their ability to adapt to changing ocean conditions. It is vital that we monitor this viability quantitatively and comparatively. Computer-assisted sperm analysis (CASA) systems offer in-depth analysis used regularly for domestic and wildlife species, but not yet for coral. This study proposes quality control procedures and CASA settings that are effective for coral sperm analysis. To resolve disparities between CASA measurements and evaluations by eye, two negative effects on motility had to be resolved, slide adhesion (procedural) and sperm dilution (biological). We showed that the addition of bovine serum albumin, or caffeine, or both to fresh sperm reduced adhesion in the CASA cassettes, improved motility and motile sperm concentration (P < 0.0001), yet these additions did not affect measurements of total sperm concentration. Diluting coral sperm reduced sperm motility (P = 0.039), especially from heat-stressed corals. We found CASA concentration counts comparable to haemocytometer and flow cytometer measures (P = 0.54). We also found that motile sperm per egg is a useful predictor of fertilisation success, using cryopreserved sperm. Standard measurements of coral reproductive characteristics inform our understanding of the impacts of climate change on reef populations; this study provides a benchmark to begin this comparative work.


Assuntos
Antozoários/fisiologia , Motilidade dos Espermatozoides , Animais , Masculino , Espermatozoides/fisiologia
9.
Sci Rep ; 8(1): 15714, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356142

RESUMO

Climate change has increased the incidence of coral bleaching events, resulting in the loss of ecosystem function and biodiversity on reefs around the world. As reef degradation accelerates, the need for innovative restoration tools has become acute. Despite past successes with ultra-low temperature storage of coral sperm to conserve genetic diversity, cryopreservation of larvae has remained elusive due to their large volume, membrane complexity, and sensitivity to chilling injury. Here we show for the first time that coral larvae can survive cryopreservation and resume swimming after warming. Vitrification in a 3.5 M cryoprotectant solution (10% v/v propylene glycol, 5% v/v dimethyl sulfoxide, and 1 M trehalose in phosphate buffered saline) followed by warming at a rate of approximately 4,500,000 °C/min with an infrared laser resulted in up to 43% survival of Fungia scutaria larvae on day 2 post-fertilization. Surviving larvae swam and continued to develop for at least 12 hours after laser-warming. This technology will enable biobanking of coral larvae to secure biodiversity, and, if managed in a high-throughput manner where millions of larvae in a species are frozen at one time, could become an invaluable research and conservation tool to help restore and diversify wild reef habitats.


Assuntos
Antozoários , Criopreservação/métodos , Calefação/métodos , Larva , Vitrificação , Animais , Biodiversidade , Recifes de Corais , Crioprotetores , Ecossistema , Lasers , Taxa de Sobrevida
10.
Sci Rep ; 7(1): 14432, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089578

RESUMO

Cryopreservation is an important conservation tool, which may help reef-building coral survive. However, scaling-up from small, laboratory-sized experiments to higher-throughput restoration is a major challenge. To be an effective restoration tool, the cryopreservation methods and husbandry to produce new offspring must be defined. This study examined small and larger-scale in vitro reproduction and settlement for Acropora tenuis and Acropora millepora and found that: 1) cryopreservation of coral sperm reduced sperm motility and fertilization success in half, thus fresh sperm, capable of becoming highly motile, is key; 2) the sperm-to-egg ratio and the concentration of the cryoprotectant treatments affected fertilization success in small- and larger-scale reproduction trials using cryopreserved sperm (p < 0.05); 3) cryopreservation did not affect settlement success, as larvae produced with fresh or cryopreserved sperm had the same settlement success (p > 0.05); and 4) the residence time of the sperm within the bank was not important as the fertilization success of sperm frozen for less than 1 month was similar to that frozen up to 2 years (p > 0.05). These results described the first settlement for coral larvae produced from cryopreserved sperm and established important ground-work principles for the use of cryopreserved coral sperm for future reef restoration efforts.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Criopreservação/métodos , Animais , Conservação dos Recursos Naturais , Recifes de Corais , Crioprotetores , Fertilização , Fertilização in vitro , Masculino , Reprodução , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA