Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 31, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797370

RESUMO

G-quadruplex and i-motif nucleic acid structures are believed to fold through kinetic partitioning mechanisms. Such mechanisms explain the structural heterogeneity of G-quadruplex metastable intermediates which have been extensively reported. On the other hand, i-motif folding is regarded as predictable, and research on alternative i-motif folds is limited. While TC5 normally folds into a stable tetrameric i-motif in solution, we report that 2'-deoxy-2'-fluoroarabinocytidine (araF-C) substitutions can prompt TC5 to form an off-pathway and kinetically-trapped dimeric i-motif, thereby expanding the scope of i-motif folding landscapes. This i-motif is formed by two strands, associated head-to-head, and featuring zero-nucleotide loops which have not been previously observed. Through spectroscopic and computational analyses, we also establish that the dimeric i-motif is stabilized by fluorine and non-fluorine hydrogen bonds, thereby explaining the superlative stability of araF-C modified i-motifs. Comparative experimental findings suggest that the strength of these interactions depends on the flexible sugar pucker adopted by the araF-C residue. Overall, the findings reported here provide a new role for i-motifs in nanotechnology and also pose the question of whether unprecedented i-motif folds may exist in vivo.

2.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555662

RESUMO

Intramolecular guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by four guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4-forming DNA sequences are enriched in gene promoters and are implicated in the control of gene expression. Most G4-forming DNA contains more G residues than can simultaneously be incorporated into the core resulting in a variety of different possible G4 structures. Although this kind of structural polymorphism is well recognized in the literature, there remain unanswered questions regarding possible connections between G4 polymorphism and biological function. Here we report a detailed bioinformatic survey of G4 polymorphism in human gene promoter regions. Our analysis is based on identifying G4-containing regions (G4CRs), which we define as stretches of DNA in which every residue can form part of a G4. We found that G4CRs with higher degrees of polymorphism are more tightly clustered near transcription sites and tend to contain G4s with shorter loops and bulges. Furthermore, we found that G4CRs with well-characterized biological functions tended to be longer and more polymorphic than genome-wide averages. These results represent new evidence linking G4 polymorphism to biological function and provide new criteria for identifying biologically relevant G4-forming regions from genomic data.


Assuntos
Quadruplex G , Guanina , Humanos , Regiões Promotoras Genéticas , DNA/química , Genoma
3.
J Am Chem Soc ; 144(27): 11986-11990, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35758883

RESUMO

The nanoscale region immediately adjacent to surfaces, although challenging to probe, is directly responsible for local chemical and physical interactions between a material and its surroundings. Cell-surface contacts are mediated by a combination of electrostatic and acid-base interactions that alter the local environment over time. In this study, a label-free vibrational probe with a nanometer length scale reveals that the electrostatic potential at a silica surface gradually increases in the presence of bacteria in solution. We illustrate that the cells themselves are not responsible for this effect. Rather, they alter the interfacial chemical environment in a manner that is consistent with a reduction of the ionic strength to a level that is roughly four times lower than that of the bulk aqueous phase.


Assuntos
Dióxido de Silício , Água , Concentração Osmolar , Eletricidade Estática , Propriedades de Superfície
4.
Sci Adv ; 8(14): eabm8455, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385301

RESUMO

Supramolecular chemistry involves the noncovalent assembly of monomers into materials with unique properties and wide-ranging applications. Thermal analysis is a key analytical tool in this field, as it provides quantitative thermodynamic information on both the structural stability and nature of the underlying molecular interactions. However, there exist many supramolecular systems whose kinetics are so slow that the thermodynamic methods currently applied are unreliable or fail completely. We have developed a simple and rapid spectroscopic method for extracting accurate thermodynamic parameters from these systems. It is based on repeatedly raising and lowering the temperature during assembly and identifying the points of transient equilibrium as they are passed on the up- and down-scans. In a proof-of-principle application to the coassembly of polydeoxyadenosine (polyA) containing 15 adenosines and cyanuric acid (CA), we found that roughly 30% of the CA binding sites on the polyA chains were unoccupied, with implications for high-valence systems.

5.
Eur J Med Chem ; 229: 114046, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995923

RESUMO

Severe diseases such as the ongoing COVID-19 pandemic, as well as the previous SARS and MERS outbreaks, are the result of coronavirus infections and have demonstrated the urgent need for antiviral drugs to combat these deadly viruses. Due to its essential role in viral replication and function, 3CLpro (main coronaviruses cysteine-protease) has been identified as a promising target for the development of antiviral drugs. Previously reported SARS-CoV 3CLpro non-covalent inhibitors were used as a starting point for the development of covalent inhibitors of SARS-CoV-2 3CLpro. We report herein our efforts in the design and synthesis of submicromolar covalent inhibitors when the enzymatic activity of the viral protease was used as a screening platform.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Animais , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Humanos , Replicação Viral/efeitos dos fármacos
6.
J Am Chem Soc ; 143(47): 19824-19833, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783562

RESUMO

Nucleobase mimicking small molecules able to reconfigure DNA are a recently discovered strategy that promises to extend the structural and functional diversity of nucleic acids. However, only simple, unfunctionalized molecules such as cyanuric acid and melamine have so far been used in this approach. In this work, we show that the addition of substituted cyanuric acid molecules can successfully program polyadenine strands to assemble into supramolecular fibers. Unlike conventional DNA nanostructure functionalization, which typically end-labels DNA strands, our approach incorporates functional groups into DNA with high density using small molecules and results in new DNA triple helices coated with alkylamine or alcohol units that grow into micrometer-long fibers. We find that small changes in the small molecule functional group can result in large structural and energetic variation in the overall assembly. A combination of circular dichroism, atomic force microscopy, molecular dynamics simulations, and a new thermodynamic method, transient equilibrium mapping, elucidated the molecular factors behind these large changes. In particular, we identify substantial DNA sugar and phosphate group deformations to accommodate a hydrogen bond between the phosphate and the small-molecule functional groups, as well as a critical chain length of the functional group which switches this interaction from intra- to interfiber. These parameters allow the controlled formation of hierarchical, hybrid DNA assemblies simply through the addition and variation of small, functionalized molecules.


Assuntos
DNA/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Polimerização , Eletricidade Estática , Triazinas/química
7.
Langmuir ; 37(38): 11222-11232, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34524822

RESUMO

Efficient delivery of therapeutic compounds to their sites of action has been a ubiquitous concern throughout the history of human medicine. The tumor microenvironment offers a variety of endogenous stimuli that may be exploited by a responsive nanocarrier, including heterogeneities in redox potential. In the early stages of the design of such responsive delivery systems, it is necessary to develop a comprehensive understanding of the biophysical mechanism by which the stimulus response occurs, as well as how the response may change from the inclusion of cargo compounds. We describe the optimization of lipid compositions for liposomes containing synthetic ferrocene-appended lipids to achieve highly efficient loading of doxorubicin via an ethylenediaminetetraacetic acid (EDTA) gradient. Liposomes containing ferrocenylated phospholipid are shown to be unstable to the loading conditions, while those including a ferrocenylated alkylammonium amphiphile obtain a near-quantitative loading efficiency. Calorimetric studies demonstrate that this instability is the consequence of the relative degree of lipid hydrolysis that occurs under the acidic loading conditions. Drug-loaded liposomes of the optimized composition are studied by cryo-TEM; the presence of doxorubicin aggregates is observed inside vesicles, and doxorubicin release, as well as the changes in membrane structure resulting from oxidant treatment, is also observed by cryogenic transmission electron microscopy (cryo-TEM). These results further demonstrate the potential of ferrocene lipids in the design of redox-responsive nanocarriers and begin to explore their possible role as probes of membrane dynamics.


Assuntos
Doxorrubicina , Lipossomos , Sistemas de Liberação de Medicamentos , Ácido Edético , Humanos , Lipídeos , Metalocenos
8.
Front Pharmacol ; 12: 633680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833683

RESUMO

SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. SARS-CoV-2 infection is necessary but not sufficient for development of clinical COVID-19 disease. Currently, there are no approved pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We have investigated several plausible hypotheses for famotidine activity including antiviral and host-mediated mechanisms of action. We propose that the principal mechanism of action of famotidine for relieving COVID-19 symptoms involves on-target histamine receptor H2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release. Based on these findings and associated hypothesis, new COVID-19 multi-drug treatment strategies based on repurposing well-characterized drugs are being developed and clinically tested, and many of these drugs are available worldwide in inexpensive generic oral forms suitable for both outpatient and inpatient treatment of COVID-19 disease.

9.
Nucleic Acids Res ; 49(6): 3063-3076, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33693924

RESUMO

Human chromosomes terminate in long, single-stranded, DNA overhangs of the repetitive sequence (TTAGGG)n. Sets of four adjacent TTAGGG repeats can fold into guanine quadruplexes (GQ), four-stranded structures that are implicated in telomere maintenance and cell immortalization and are targets in cancer therapy. Isolated GQs have been studied in detail, however much less is known about folding in long repeat sequences. Such chains adopt an enormous number of configurations containing various arrangements of GQs and unfolded gaps, leading to a highly frustrated energy landscape. To better understand this phenomenon, we used mutagenesis, thermal melting, and global analysis to determine stability, kinetic, and cooperativity parameters for GQ folding within chains containing 8-12 TTAGGG repeats. We then used these parameters to simulate the folding of 32-repeat chains, more representative of intact telomeres. We found that a combination of folding frustration and negative cooperativity between adjacent GQs increases TTAGGG unfolding by up to 40-fold, providing an abundance of unfolded gaps that are potential binding sites for telomeric proteins. This effect was most pronounced at the chain termini, which could promote telomere extension by telomerase. We conclude that folding frustration is an important and largely overlooked factor controlling the structure of telomeric DNA.


Assuntos
DNA/química , Quadruplex G , Telômero/química , Cinética , Sequências de Repetição em Tandem , Termodinâmica
10.
Nucleic Acids Res ; 49(3): 1247-1262, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33469659

RESUMO

G-quadruplexes (G4s) are four-stranded, guanine-rich nucleic acid structures that can influence a variety of biological processes such as the transcription and translation of genes and DNA replication. In many cases, a single G4-forming nucleic acid sequence can adopt multiple different folded conformations that interconvert on biologically relevant timescales, entropically stabilizing the folded state. The coexistence of different folded conformations also suggests that there are multiple pathways leading from the unfolded to the folded state ensembles, potentially modulating the folding rate and biological activity. We have developed an experimental method for quantifying the contributions of individual pathways to the folding of conformationally heterogeneous G4s that is based on mutagenesis, thermal hysteresis kinetic experiments and global analysis, and validated our results using photocaged kinetic NMR experiments. We studied the regulatory Pu22 G4 from the c-myc oncogene promoter, which adopts at least four distinct folded isomers. We found that the presence of four parallel pathways leads to a 2.5-fold acceleration in folding; that is, the effective folding rate from the unfolded to folded ensembles is 2.5 times as large as the rate constant for the fastest individual pathway. Since many G4 sequences can adopt many more than four isomers, folding accelerations of more than an order of magnitude are possible via this mechanism.


Assuntos
Quadruplex G , Humanos , Isomerismo , Cinética , Mutação , Ressonância Magnética Nuclear Biomolecular , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Termodinâmica
11.
Res Sq ; 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32702719

RESUMO

SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. Currently, there are no pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We explore several plausible avenues of activity including antiviral and host-mediated actions. We propose that the principal famotidine mechanism of action for COVID-19 involves on-target histamine receptor H2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release.

12.
Angew Chem Int Ed Engl ; 59(31): 12900-12908, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32277788

RESUMO

Triggering the release of small molecules in response to unique biomarkers is important for applications in drug delivery and biodetection. Due to low quantities of biomarker, amplifying release is necessary to gain appreciable responses. Nucleic acids have been used for both their biomarker-recognition properties and as stimuli, notably in amplified small-molecule release by nucleic-acid-templated catalysis (NATC). The multiple components and reversibility of NATC, however, make it difficult to apply in vivo. Herein, we report the use of the hybridization chain reaction (HCR) for the amplified, conditional release of small molecules from standalone nanodevices. We couple HCR with a DNA-templated reaction resulting in the amplified, immolative release of small molecules. We integrate the HCR components into single nanodevices as DNA tracks and spherical nucleic acids, spatially isolating reactive groups until triggering. This could be applied to biosensing, imaging, and drug delivery.


Assuntos
DNA/química , Sistemas de Liberação de Medicamentos/métodos , Camptotecina/administração & dosagem , Camptotecina/química , DNA/genética , Liberação Controlada de Fármacos , Fluoresceínas/administração & dosagem , Fluoresceínas/química , Sequências Repetidas Invertidas , Hibridização de Ácido Nucleico/métodos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química
13.
J Am Chem Soc ; 142(1): 264-273, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31815451

RESUMO

The complex folding energy landscape of DNA G-quadruplexes leads to numerous conformations for this functionally important class of noncanonical DNA structures. A new layer of conformational heterogeneity comes from sequences with different numbers of G-nucleotides in each of the DNA G-strands that form the four-stranded G-quartet core. The mechanisms by which G-quadruplexes transition from one folded conformation to another are currently unknown. To address this question, we studied two different G-quadruplexes, selecting a single conformation by blocking hydrogen bonding with photolabile protection groups. Upon irradiation, the block can be released and the kinetics of re-equilibration to the native conformational equilibrium can be determined by time-resolved NMR. We compared the NMR-derived refolding kinetics with data derived from thermal hysteresis folding kinetic experiments and found excellent agreement. The outlined methodological approach allows separation of K+-induced G-quadruplex formation and subsequent refolding and provides key insight into rate-limiting steps of G-quadruplex conformational dynamics.


Assuntos
DNA/química , Quadruplex G , Conformação de Ácido Nucleico , Cinética , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA