Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 940: 173480, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796012

RESUMO

The rewetting of formerly drained peatlands can help to counteract climate change through the reduction of CO2 emissions. However, this can lead to resuming CH4 emissions due to changes in the microbiome, favoring CH4-producing archaea. How plants, hydrology and microbiomes interact as ultimate determinants of CH4 dynamics is still poorly understood. Using a mesocosm approach, we studied peat microbiomes, below-ground root biomass and CH4 fluxes with three different water level regimes (stable high, stable low and fluctuating) and four different plant communities (bare peat, Carex rostrata, Juncus inflexus and their mixture) over the course of one growing season. A significant difference in microbiome composition was found between mesocosms with and without plants, while the difference between plant species identity or water regimes was rather weak. A significant difference was also found between the upper and lower peat, with the difference increasing as plants grew. By the end of the growing season, the methanogen relative abundance was higher in the sub-soil layer, as well as in the bare peat and C. rostrata pots, as compared to J. inflexus or mixture pots. This was inversely linked to the larger root area of J. inflexus. The root area also negatively correlated with CH4 fluxes which positively correlated with the relative abundance of methanogens. Despite the absence or low abundance of methanotrophs in many samples, the integration of methanotroph abundance improved the quality of the correlation with CH4 fluxes, and methanogens and methanotrophs together determined CH4 fluxes in a structural equation model. However, water regime showed no significant impact on plant roots and methanogens, and consequently, on CH4 fluxes. This study showed that plant roots determined the microbiome composition and, in particular, the relative abundance of methanogens and methanotrophs, which, in interaction, drove the CH4 fluxes.


Assuntos
Metano , Microbiota , Raízes de Plantas , Metano/metabolismo , Raízes de Plantas/microbiologia , Áreas Alagadas , Hidrologia , Microbiologia do Solo
2.
Pers Soc Psychol Bull ; : 1461672231219719, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284645

RESUMO

Using data from 15 countries, this article investigates whether descriptive and prescriptive gender norms concerning housework and child care (domestic work) changed after the onset of the COVID-19 pandemic. Results of a total of 8,343 participants (M = 19.95, SD = 1.68) from two comparable student samples suggest that descriptive norms about unpaid domestic work have been affected by the pandemic, with individuals seeing mothers' relative to fathers' share of housework and child care as even larger. Moderation analyses revealed that the effect of the pandemic on descriptive norms about child care decreased with countries' increasing levels of gender equality; countries with stronger gender inequality showed a larger difference between pre- and post-pandemic. This study documents a shift in descriptive norms and discusses implications for gender equality-emphasizing the importance of addressing the additional challenges that mothers face during health-related crises.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA