Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 441: 108927, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096707

RESUMO

Cochlear synaptopathy is a common pathology in humans associated with aging and potentially sound overexposure. Synaptopathy is widely expected to cause "hidden hearing loss," including difficulty perceiving speech in noise, but support for this hypothesis is controversial. Here in budgerigars (Melopsittacus undulatus), we evaluated the impact of long-term cochlear synaptopathy on behavioral discrimination of Gaussian noise (GN) and low-noise noise (LNN) signals processed to have a flatter envelope. Stimuli had center frequencies of 1-3kHz, 100-Hz bandwidth, and were presented at sensation levels (SLs) from 10 to 30dB. We reasoned that narrowband, low-SL stimuli of this type should minimize spread of excitation across auditory-nerve fibers, and hence might reveal synaptopathy-related defects if they exist. Cochlear synaptopathy was induced without hair-cell injury using kainic acid (KA). Behavioral threshold tracking experiments characterized the minimum stimulus duration above which animals could reliably discriminate between LNN and GN. Budgerigar thresholds for LNN-GN discrimination ranged from 40 to 60ms at 30dB SL, were similar across frequencies, and increased for lower SLs. Notably, animals with long-term 39-77% estimated synaptopathy performed similarly to controls, requiring on average a ∼7.5% shorter stimulus duration (-0.7±1.0dB; mean difference ±SE) for LNN-GN discrimination. Decision-variable correlation analyses of detailed behavioral response patterns showed that individual animals relied on envelope cues to discriminate LNN and GN, with lesser roles of FM and energy cues; no difference was found between KA-exposed and control groups. These results suggest that long-term cochlear synaptopathy does not impair discrimination of low-level signals with different envelope statistics.


Assuntos
Perda Auditiva Provocada por Ruído , Melopsittacus , Humanos , Animais , Cóclea/patologia , Ácido Caínico/toxicidade , Estimulação Acústica/efeitos adversos , Limiar Auditivo/fisiologia , Perda Auditiva Oculta , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/patologia
2.
Hear Res ; 440: 108915, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992517

RESUMO

Neurons in the mammalian inferior colliculus (IC) are sensitive to the velocity (speed and direction) of fast frequency chirps contained in Schroeder-phase harmonic complexes (SCHR). However, IC neurons are also sensitive to stimulus periodicity, a prominent feature of SCHR stimuli. Here, to disentangle velocity sensitivity from periodicity tuning, we introduced a novel stimulus consisting of aperiodic random chirps. Extracellular, single-unit recordings were made in the IC of Dutch-belted rabbits in response to both SCHR and aperiodic chirps. Rate-velocity functions were constructed from aperiodic-chirp responses and compared to SCHR rate profiles, revealing interactions between stimulus periodicity and neural velocity sensitivity. A generalized linear model analysis demonstrated that periodicity tuning influences SCHR response rates more strongly than velocity sensitivity. Principal component analysis of rate-velocity functions revealed that neurons were more often sensitive to the direction of lower-velocity chirps and were less often sensitive to the direction of higher-velocity chirps. Overall, these results demonstrate that sensitivity to chirp velocity is common in the IC. Harmonic sounds with complex phase spectra, such as speech and music, contain chirps, and velocity sensitivity would shape IC responses to these sounds.


Assuntos
Colículos Inferiores , Animais , Coelhos , Estimulação Acústica/métodos , Colículos Inferiores/fisiologia , Modelos Lineares , Mamíferos , Neurônios/fisiologia , Vigília
3.
J Assoc Res Otolaryngol ; 24(5): 473-485, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798548

RESUMO

PURPOSE: Loss of auditory nerve afferent synapses with cochlear hair cells, called cochlear synaptopathy, is a common pathology in humans caused by aging and noise overexposure. The perceptual consequences of synaptopathy in isolation from other cochlear pathologies are still unclear. Animal models provide an effective approach to resolve uncertainty regarding the physiological and perceptual consequences of auditory nerve loss, because neural lesions can be induced and readily quantified. The budgerigar, a parakeet species, has recently emerged as an animal model for synaptopathy studies based on its capacity for vocal learning and ability to behaviorally discriminate simple and complex sounds with acuity similar to humans. Kainic acid infusions in the budgerigar produce a profound reduction of compound auditory nerve responses, including wave I of the auditory brainstem response, without impacting physiological hair cell measures. These results suggest selective auditory nerve damage. However, histological correlates of neural injury from kainic acid are still lacking. METHODS: We quantified the histological effects caused by intracochlear infusion of kainic acid (1 mM; 2.5 µL), and evaluated correlations between the histological and physiological assessments of auditory nerve status. RESULTS: Kainic acid infusion in budgerigars produced pronounced loss of neural auditory nerve soma (60% on average) in the cochlear ganglion, and of peripheral axons, at time points 2 or more months following injury. The hair cell epithelium was unaffected by kainic acid. Neural loss was significantly correlated with reduction of compound auditory nerve responses and auditory brainstem response wave I. CONCLUSION: Compound auditory nerve responses and wave I provide a useful index of cochlear synaptopathy in this animal model.


Assuntos
Perda Auditiva Provocada por Ruído , Melopsittacus , Humanos , Animais , Ácido Caínico/toxicidade , Estimulação Acústica , Limiar Auditivo/fisiologia , Nervo Coclear , Cóclea/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Sinapses
4.
Hear Res ; 435: 108812, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269601

RESUMO

Schroeder-phase harmonic tone complexes can have a flat temporal envelope and rising or falling instantaneous-frequency sweeps within F0 periods, depending on the phase-scaling parameter C. Human tone-detection thresholds in a concurrent Schroeder masker are 10-15 dB lower for positive C values (rising frequency sweeps) compared to negative (falling sweeps), potentially due to cochlear mechanics, though this hypothesis remains controversial. Birds provide an interesting model for studies of Schroeder masking because many species produce vocalizations containing frequency sweeps. Prior behavioral studies in birds suggest less behavioral threshold difference between maskers with opposite C values than in humans, but focused on low masker F0s and did not explore neural mechanisms. We performed behavioral Schroeder-masking experiments in budgerigars (Melopsittacus undulatus) using a wide range of masker F0 and C values. Signal frequency was 2800 Hz. Neural recordings from the midbrain characterized encoding of behavioral stimuli in awake animals. Behavioral thresholds increased with increasing masker F0 and showed minimal difference between opposite C values, consistent with prior budgerigar studies. Midbrain recordings showed prominent temporal and rate-based encoding of Schroeder F0, and in many cases, marked asymmetry in Schroeder responses between C polarities. Neural thresholds for Schroeder-masked tone detection were often based on a response decrement compared to the masker alone, consistent with prominent modulation tuning in midbrain neurons, and were generally similar between opposite C values. The results highlight the likely importance of envelope cues in Schroeder masking and show that differences in supra-threshold Schroeder responses do not necessarily result in neural threshold differences.


Assuntos
Melopsittacus , Humanos , Animais , Limiar Auditivo/fisiologia , Mascaramento Perceptivo/fisiologia , Cóclea/fisiologia
5.
Front Neurosci ; 16: 997656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532285

RESUMO

Human listeners are more sensitive to tones embedded in diotic noise when the tones are out-of-phase at the two ears (N0Sπ) than when they are in-phase (N0S0). The difference between the tone-detection thresholds for these two conditions is referred to as the binaural masking level difference (BMLD) and reflects a benefit of binaural processing. Detection in the N0Sπ condition has been explained in modeling studies by changes in interaural correlation (IAC), but this model has only been directly tested physiologically for low frequencies. Here, the IAC-based hypothesis for binaural detection was examined across a wide range of frequencies and masker levels using recordings in the awake rabbit inferior colliculus (IC). IAC-based cues were strongly correlated with neural responses to N0Sπ stimuli. Additionally, average rate-based thresholds were calculated for both N0S0 and N0Sπ conditions. The rate-based neural BMLD at 500 Hz matched rabbit behavioral data, but the trend of neural BMLDs across frequency differed from that of humans.

6.
J Assoc Res Otolaryngol ; 23(6): 751-758, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280641

RESUMO

Children with a history of temporary conductive hearing loss (CHL) during early development may show long-term impairments in auditory processes that persist after restoration of normal audiometric hearing thresholds. Tones in noise provide a simplified paradigm for studying hearing in noise. Prior research has shown that adults with sensorineural hearing loss may alter their listening strategy to use single-channel energy cues for tone-in-noise (TIN) detection rather than rove-resistant envelope or spectral profile cues. Our objective was to determine the effect of early CHL on TIN detection in healthy children compared to controls. Children ages 4-7 years, with and without a history of CHL due to otitis media with effusion (OME) before age 3 years, participated in a two-alternative forced choice TIN detection task. Audiometric thresholds were normal at the time of testing. Thresholds for detection of a 1000 Hz tone were measured in fixed-level noise and in roving-level noise that made single-channel energy cues unreliable. Participants included 23 controls and 23 with a history of OME-related CHL. TIN thresholds decreased with increasing age across participants. Children in both groups showed similar TIN sensitivity and little or no threshold elevation in the roving-level condition compared to fixed-level tracks, consistent with use of rove-resistant cues. In contrast to older listeners with sensorineural hearing loss, there was no detectable change in TIN sensitivity with roving level for children with a history of OME-related CHL.


Assuntos
Perda Auditiva Neurossensorial , Otite Média com Derrame , Adulto , Criança , Pré-Escolar , Humanos , Audiometria de Tons Puros , Limiar Auditivo , Audição , Perda Auditiva Condutiva/diagnóstico , Otite Média com Derrame/diagnóstico
7.
Mol Cell Neurosci ; 118: 103692, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883241

RESUMO

Afferent innervation of the cochlea by the auditory nerve declines during aging and potentially after sound overexposure, producing the common pathology known as cochlear synaptopathy. Auditory-nerve-fiber loss is difficult to detect with the clinical audiogram and has been proposed to cause 'hidden hearing loss' including impaired speech-in-noise perception. While evidence that auditory-nerve-fiber loss causes hidden hearing loss in humans is controversial, behavioral animal models hold promise to rigorously test this hypothesis because neural lesions can be induced and histologically validated. Here, we review recent animal behavioral studies on the impact of auditory-nerve-fiber loss on perception in a range of species. We first consider studies of tinnitus and hyperacusis inferred from acoustic startle reflexes, followed by a review of operant-conditioning studies of the audiogram, temporal integration for tones of varying duration, temporal resolution of gaps in noise, and tone-in-noise detection. Studies quantifying the audiogram show that tone-in-quiet sensitivity is unaffected by auditory-nerve-fiber loss unless neural lesions exceed 80%, at which point large deficits are possible. Changes in other aspects of perception, which were typically investigated for moderate-to-severe auditory-nerve-fiber loss of 50-70%, appear heterogeneous across studies and might be small compared to impairment caused by hair-cell pathologies. Future studies should pursue recent findings that behavioral sensitivity to brief tones and silent gaps in noise may be particularly vulnerable to auditory-nerve-fiber loss. Furthermore, aspects of auditory perception linked to central inhibition and fine neural response timing, such as modulation masking release and spatial hearing, may be productive directions for further animal behavioral research.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva , Animais , Percepção Auditiva , Limiar Auditivo/fisiologia , Nervo Coclear , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva/etiologia , Modelos Animais
8.
Hear Res ; 409: 108328, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391193

RESUMO

Human detection thresholds in tone-in-noise (TIN) paradigms cannot be explained by the prevalent power-spectrum model when stimulus energy is made less reliable, e.g., in roving-level or equal-energy paradigms. Envelope-related cues provide an alternative that is more robust across level. The TIN stimulus envelope is encoded by slow fluctuations in auditory-nerve (AN) responses - a temporal representation affected by inner-hair-cell (IHC) saturation and cochlear compression. Here, envelope-related fluctuations in AN responses were hypothesized to be reflected in responses of neurons in the inferior colliculus (IC), which have average discharge rates that are sensitive to amplitude-modulation (AM) depth and frequency. Responses to tones masked by narrowband gaussian noise (GN) and low-noise noise (LNN) were recorded in the IC of awake rabbits. Fluctuation amplitudes in the stimulus envelope and in model AN responses decrease for GN maskers and increase for LNN upon addition of tones near threshold. Response rates of IC neurons that are excited by AM were expected to be positively correlated with fluctuation amplitudes, whereas rates of neurons suppressed by AM were expected to be negatively correlated. Of neurons with measurable TIN-detection thresholds, most had the predicted changes in rate with increasing tone level for both GN and LNN maskers. Changes in rate with tone level were correlated with envelope sensitivity measured with two methods, including the maximum slopes of modulation transfer functions. IC rate-based thresholds were broadly consistent with published human and rabbit behavioral data. These results highlight the importance of midbrain sensitivity to envelope cues, as represented in peripheral neural fluctuations, for detection of signals in noise.


Assuntos
Colículos Inferiores , Ruído , Animais , Coelhos , Limiar Auditivo , Sinais (Psicologia) , Ruído/efeitos adversos
9.
J Neurosci ; 41(34): 7206-7223, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34266898

RESUMO

Hearing in noise is a problem often assumed to depend on encoding of energy level by channels tuned to target frequencies, but few studies have tested this hypothesis. The present study examined neural correlates of behavioral tone-in-noise (TIN) detection in budgerigars (Melopsittacus undulatus, either sex), a parakeet species with human-like behavioral sensitivity to many simple and complex sounds. Behavioral sensitivity to tones in band-limited noise was assessed using operant-conditioning procedures. Neural recordings were made in awake animals from midbrain-level neurons in the inferior colliculus, the first processing stage of the ascending auditory pathway with pronounced rate-based encoding of stimulus amplitude modulation. Budgerigar TIN detection thresholds were similar to human thresholds across the full range of frequencies (0.5-4 kHz) and noise levels (45-85 dB SPL) tested. Also as in humans, thresholds were minimally affected by a challenging roving-level condition with random variation in background-noise level. Many midbrain neurons showed a decreasing response rate as TIN signal-to-noise ratio (SNR) was increased by elevating the tone level, a pattern attributable to amplitude-modulation tuning in these cells and the fact that higher SNR tone-plus-noise stimuli have flatter amplitude envelopes. TIN thresholds of individual neurons were as sensitive as behavioral thresholds under most conditions, perhaps surprisingly even when the unit's characteristic frequency was tuned an octave or more away from the test frequency. A model that combined responses of two cell types enhanced TIN sensitivity in the roving-level condition. These results highlight the importance of midbrain-level envelope encoding and off-frequency neural channels for hearing in noise.SIGNIFICANCE STATEMENT Detection of target sounds in noise is often assumed to depend on energy-level encoding by neural processing channels tuned to the target frequency. In contrast, we found that tone-in-noise sensitivity in budgerigars was often greatest in midbrain neurons not tuned to the test frequency, underscoring the potential importance of off-frequency channels for perception. Furthermore, the results highlight the importance of envelope processing for hearing in noise, especially under challenging conditions with random variation in background noise level over time.


Assuntos
Estimulação Acústica , Vias Auditivas/fisiologia , Limiar Auditivo/fisiologia , Condicionamento Operante/fisiologia , Colículos Inferiores/fisiologia , Melopsittacus/fisiologia , Neurônios/fisiologia , Razão Sinal-Ruído , Animais , Mapeamento Encefálico , Sinais (Psicologia) , Eletrodos Implantados , Feminino , Colículos Inferiores/citologia , Masculino , Ruído , Percepção da Altura Sonora/fisiologia
10.
J Neurosci ; 41(1): 118-129, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33177067

RESUMO

Loss of auditory-nerve (AN) afferent cochlear innervation is a prevalent human condition that does not affect audiometric thresholds and therefore remains largely undetectable with standard clinical tests. AN loss is widely expected to cause hearing difficulties in noise, known as "hidden hearing loss," but support for this hypothesis is controversial. Here, we used operant conditioning procedures to examine the perceptual impact of AN loss on behavioral tone-in-noise (TIN) sensitivity in the budgerigar (Melopsittacus undulatus; of either sex), an avian animal model with complex hearing abilities similar to humans. Bilateral kainic acid (KA) infusions depressed compound AN responses by 40-70% without impacting otoacoustic emissions or behavioral tone sensitivity in quiet. Surprisingly, animals with AN damage showed normal thresholds for tone detection in noise (0.1 ± 1.0 dB compared to control animals; mean difference ± SE), even under a challenging roving-level condition with random stimulus variation across trials. Furthermore, decision-variable correlations (DVCs) showed no difference for AN-damaged animals in their use of energy and envelope cues to perform the task. These results show that AN damage has less impact on TIN detection than generally expected, even under a difficult roving-level condition known to impact TIN detection in individuals with sensorineural hearing loss (SNHL). Perceptual deficits could emerge for different perceptual tasks or with greater AN loss but are potentially minor compared with those caused by SNHL.SIGNIFICANCE STATEMENT Loss of auditory-nerve (AN) cochlear innervation is a common problem in humans that does not affect audiometric thresholds on a clinical hearing test. AN loss is widely expected to cause hearing problems in noise, known as "hidden hearing loss," but existing studies are controversial. Here, using an avian animal model with complex hearing abilities similar to humans, we examined for the first time the impact of an experimentally induced AN lesion on behavioral tone sensitivity in noise. Surprisingly, AN-lesioned animals showed no difference in hearing performance in noise or detection strategy compared with controls. These results show that perceptual deficits from AN damage are smaller than generally expected, and potentially minor compared with those caused by sensorineural hearing loss (SNHL).


Assuntos
Percepção Auditiva , Nervo Coclear/lesões , Perda Auditiva/fisiopatologia , Melopsittacus/fisiologia , Ruído , Animais , Limiar Auditivo , Cóclea/fisiopatologia , Condicionamento Operante , Sinais (Psicologia) , Metabolismo Energético , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Antagonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Perda Auditiva Neurossensorial/fisiopatologia , Ácido Caínico/toxicidade , Masculino , Emissões Otoacústicas Espontâneas
11.
J Assoc Res Otolaryngol ; 22(1): 33-49, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33078291

RESUMO

Sensorineural hearing loss is a prevalent problem that adversely impacts quality of life by compromising interpersonal communication. While hair cell damage is readily detectable with the clinical audiogram, this traditional diagnostic tool appears inadequate to detect lost afferent connections between inner hair cells and auditory nerve (AN) fibers, known as cochlear synaptopathy. The envelope-following response (EFR) is a scalp-recorded response to amplitude modulation, a critical acoustic feature of speech. Because EFRs can have greater amplitude than wave I of the auditory brainstem response (ABR; i.e., the AN-generated component) in humans, the EFR may provide a more sensitive way to detect cochlear synaptopathy. We explored the effects of kainate- (kainic acid) induced excitotoxic AN injury on EFRs and ABRs in the budgerigar (Melopsittacus undulatus), a parakeet species used in studies of complex sound discrimination. Kainate reduced ABR wave I by 65-75 % across animals while leaving otoacoustic emissions unaffected or mildly enhanced, consistent with substantial and selective AN synaptic loss. Compared to wave I loss, EFRs showed similar or greater percent reduction following kainate for amplitude-modulation frequencies from 380 to 940 Hz and slightly less reduction from 80 to 120 Hz. In contrast, forebrain-generated middle latency responses showed no consistent change post-kainate, potentially due to elevated "central gain" in the time period following AN damage. EFR reduction in all modulation frequency ranges was highly correlated with wave I reduction, though within-animal effect sizes were greater for higher modulation frequencies. These results suggest that even low-frequency EFRs generated primarily by central auditory nuclei might provide a useful noninvasive tool for detecting synaptic injury clinically.


Assuntos
Nervo Coclear/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico , Ácido Caínico/toxicidade , Melopsittacus , Estimulação Acústica , Animais , Limiar Auditivo , Cóclea/efeitos dos fármacos , Cóclea/fisiologia , Nervo Coclear/lesões , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Perda Auditiva , Humanos , Qualidade de Vida
12.
J Acoust Soc Am ; 147(2): 984, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113293

RESUMO

Previous studies evaluated cues for masked tone detection using reproducible noise waveforms. Human results founded on this approach suggest that tone detection is based on combined energy and envelope (ENV) cues, but detection cues in nonhuman species are less clear. Decision variable correlation (DVC) was used to evaluate tone-in-noise detection cues in the budgerigar, an avian species with human-like behavioral sensitivity to many complex sounds. DVC quantifies a model's ability to predict trial-by-trial variance in behavioral responses. Budgerigars were behaviorally conditioned to detect 500-Hz tones in wideband (WB; 100-3000 Hz) and narrowband (NB; 452-552 Hz) noise. Behavioral responses were obtained using a single-interval, two-alternative discrimination task and two-down, one-up adaptive tracking procedures. Tone-detection thresholds in WB noise were higher than human thresholds, putatively due to broader peripheral frequency tuning, whereas NB thresholds were within ∼1 dB of human results. Budgerigar average hit and false-alarm rates across noise waveforms were consistent, highly correlated across subjects, and correlated to human results. Trial-by-trial behavioral results in NB noise were best explained by a model combining energy and ENV cues. In contrast, WB results were better predicted by ENV-based or multiple-channel energy detector models. These results suggest that budgerigars and humans use similar cues for tone-in-noise detection.


Assuntos
Melopsittacus , Animais , Limiar Auditivo , Sinais (Psicologia) , Humanos , Ruído/efeitos adversos , Mascaramento Perceptivo , Som
13.
Ear Hear ; 41(4): 1009-1019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31985535

RESUMO

OBJECTIVES: The objective of our study is to understand how listeners with and without sensorineural hearing loss (SNHL) use energy and temporal envelope cues to detect tones in noise. Previous studies of low-frequency tone-in-noise detection have shown that when energy cues are made less reliable using a roving-level paradigm, thresholds of listeners with normal hearing (NH) are only slightly increased. This result is consistent with studies demonstrating the importance of temporal envelope cues for masked detection. In contrast, roving-level detection thresholds are more elevated in listeners with SNHL at the test frequency, suggesting stronger weighting of energy cues. The present study extended these tests to a wide range of frequencies and stimulus levels. The authors hypothesized that individual listeners with SNHL use energy and temporal envelope cues differently for masked detection at different frequencies and levels, depending on the degree of hearing loss. DESIGN: Twelve listeners with mild to moderate SNHL and 12 NH listeners participated. Tone-in-noise detection thresholds at 0.5, 1, 2, and 4 kHz in 1/3 octave bands of simultaneously gated Gaussian noise were obtained using a novel, two-part tracking paradigm. A track refers to the sequence of trials in an adaptive test procedure; the signal to noise ratio was the tracked variable. Each part of the track consisted of a two-alternative, two-interval, forced-choice procedure. The initial portion of the track estimated detection threshold using a fixed masker level. When the track continued, stimulus levels were randomly varied over a 20-dB rove range (±10 dB with respect to mean masker level), and a second threshold was estimated. Rove effect (RE) was defined as the difference between thresholds for the fixed- and roving-level tests. The size of the RE indicated how strongly a listener weighted energy-based cues for masked detection. Participants were tested at one to three masker levels per frequency, depending on audibility. RESULTS: Across all stimulus frequencies and levels, NH listeners had small REs (≈1 dB), whereas listeners with SNHL typically had larger REs. Some listeners with SNHL had larger REs at higher frequencies, where pure-tone audiometric thresholds were typically elevated. RE did not vary significantly with masker level for either group. Increased RE for the SNHL group was consistent with simulations in which energy cues were more heavily weighted than envelope cues. CONCLUSIONS: Tone-in-noise detection thresholds in NH listeners were typically elevated only slightly by the roving-level paradigm at any frequency or level tested, consistent with the primary use of level-independent cues, such as temporal envelope cues that are conveyed by fluctuations in neural responses. In comparison, thresholds of listeners with SNHL were more affected by the roving-level paradigm, suggesting stronger weighting of energy cues. For listeners with SNHL, the largest RE was observed at 4000 Hz, for which pure-tone audiometric thresholds were most elevated. Specifically, RE size at 4000 Hz was significantly correlated with higher pure-tone audiometric thresholds at the same frequency, after controlling for the effect of age. Future studies will explore strategies for restoring or enhancing neural fluctuation cues that may lead to improved hearing in noise for listeners with SNHL.


Assuntos
Sinais (Psicologia) , Perda Auditiva Neurossensorial , Adulto , Idoso , Audiometria de Tons Puros , Limiar Auditivo , Feminino , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Ruído , Mascaramento Perceptivo , Adulto Jovem
14.
J Neurosci ; 39(35): 6879-6887, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31285299

RESUMO

Speech intelligibility can vary dramatically between individuals with similar clinically defined severity of hearing loss based on the audiogram. These perceptual differences, despite equal audiometric-threshold elevation, are often assumed to reflect central-processing variations. Here, we compared peripheral-processing in auditory nerve (AN) fibers of male chinchillas between two prevalent hearing loss etiologies: metabolic hearing loss (MHL) and noise-induced hearing loss (NIHL). MHL results from age-related reduction of the endocochlear potential due to atrophy of the stria vascularis. MHL in the present study was induced using furosemide, which provides a validated model of age-related MHL in young animals by reversibly inhibiting the endocochlear potential. Effects of MHL on peripheral processing were assessed using Wiener-kernel (system identification) analyses of single AN fiber responses to broadband noise, for direct comparison to previously published AN responses from animals with NIHL. Wiener-kernel analyses show that even mild NIHL causes grossly abnormal coding of low-frequency stimulus components. In contrast, for MHL the same abnormal coding was only observed with moderate to severe loss. For equal sensitivity loss, coding impairment was substantially less severe with MHL than with NIHL, probably due to greater preservation of the tip-to-tail ratio of cochlear frequency tuning with MHL compared with NIHL rather than different intrinsic AN properties. Differences in peripheral neural coding between these two pathologies-the more severe of which, NIHL, is preventable-likely contribute to individual speech perception differences. Our results underscore the need to minimize noise overexposure and for strategies to personalize diagnosis and treatment for individuals with sensorineural hearing loss.SIGNIFICANCE STATEMENT Differences in speech perception ability between individuals with similar clinically defined severity of hearing loss are often assumed to reflect central neural-processing differences. Here, we demonstrate for the first time that peripheral neural processing of complex sounds differs dramatically between the two most common etiologies of hearing loss. Greater processing impairment with noise-induced compared with an age-related (metabolic) hearing loss etiology may explain heightened speech perception difficulties in people overexposed to loud environments. These results highlight the need for public policies to prevent noise-induced hearing loss, an entirely avoidable hearing loss etiology, and for personalized strategies to diagnose and treat sensorineural hearing loss.


Assuntos
Percepção Auditiva/fisiologia , Nervo Coclear/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Audição/fisiologia , Animais , Limiar Auditivo , Chinchila , Modelos Animais de Doenças , Furosemida , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/etiologia , Masculino
15.
Hear Res ; 374: 24-34, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30703625

RESUMO

Auditory-nerve fibers are lost steadily with age and as a possible consequence of noise-induced glutamate excitotoxicity. Auditory-nerve loss in the absence of other cochlear pathologies is thought to be undetectable with a pure-tone audiogram while degrading real-world speech perception (hidden hearing loss). Perceptual deficits remain unclear, however, due in part to the limited behavioral capacity of existing rodent models to discriminate complex sounds. The budgerigar is an avian vocal learner with human-like behavioral sensitivity to many simple and complex sounds and the capacity to mimic speech. Previous studies in this species show that intracochlear kainic-acid infusion reduces wave 1 of the auditory brainstem response by 40-70%, consistent with substantial excitotoxic auditory-nerve damage. The present study used operant-conditioning procedures in trained budgerigars to quantify kainic-acid effects on tone detection across frequency (0.25-8 kHz; the audiogram) and as a function of duration (20-160 ms; temporal integration). Tone thresholds in control animals were lowest from 1 to 4 kHz and decreased with increasing duration as in previous studies of the budgerigar. Behavioral results in kainic-acid-exposed animals were as sensitive as in controls, suggesting preservation of the audiogram and temporal integration despite auditory-nerve loss associated with up to 70% wave 1 reduction. Distortion-product otoacoustic emissions were also preserved in kainic-acid exposed animals, consistent with normal hair-cell function. These results highlight considerable perceptual resistance of tone-detection performance with selective auditory-nerve loss. Future behavioral studies in budgerigars with auditory-nerve damage can use complex speech-like stimuli to help clarify aspects of auditory perception impacted by this common cochlear pathology.


Assuntos
Nervo Coclear/fisiopatologia , Melopsittacus/fisiologia , Estimulação Acústica , Animais , Audiometria de Tons Puros , Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Comportamento Animal/fisiologia , Nervo Coclear/efeitos dos fármacos , Nervo Coclear/lesões , Condicionamento Operante/fisiologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Humanos , Ácido Caínico/toxicidade , Masculino , Emissões Otoacústicas Espontâneas/fisiologia , Ototoxicidade/fisiopatologia , Psicoacústica
16.
J Assoc Res Otolaryngol ; 19(4): 435-449, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29744730

RESUMO

Permanent loss of auditory nerve (AN) fibers occurs with increasing age and sound overexposure, sometimes without hair cell damage or associated audiometric threshold elevation. Rodent studies suggest effects of AN damage on central processing and behavior, but these species have limited capacity to discriminate low-frequency speech-like sounds. Here, we introduce a new animal model of AN damage in an avian communication specialist, the budgerigar (Melopsittacus undulatus). The budgerigar is a vocal learner and speech mimic with sensitive low-frequency hearing and human-like behavioral sensitivity to many complex signals including speech components. Excitotoxic AN damage was induced through bilateral cochlear infusions of kainic acid (KA). Acute KA effects on cochlear function were assessed using AN compound action potentials (CAPs) and hair cell cochlear microphonics (CMs). Long-term KA effects were assessed using auditory brainstem response (ABR) measurements for up to 31 weeks post-KA exposure. KA infusion immediately abolished AN CAPs while having mild impact on the CM. ABR wave I, the far-field AN response, showed a pronounced 40-75 % amplitude reduction at moderate-to-high sound levels that persisted for the duration of the study. In contrast, wave I latency and the amplitude of wave V were nearly unaffected by KA, and waves II-IV were less reduced than wave I. ABR thresholds, calculated based on complete response waveforms, showed no impairment following KA. These results demonstrate that KA exposure in the budgerigar causes irreversible AN damage, most likely through excitotoxic injury to afferent fibers or synapses as in other species, while sparing ABR thresholds. Normal wave V amplitude, assumed to originate centrally, may persist through compensatory mechanisms that restore central response amplitude by downregulating inhibition. Future studies in this new animal model of AN damage can explore effects of this neural lesion, in isolation from hair cell trauma and threshold elevation, on central processing and perception of complex sounds.


Assuntos
Nervo Coclear/efeitos dos fármacos , Ácido Caínico/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Cóclea/efeitos dos fármacos , Cóclea/fisiologia , Nervo Coclear/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Masculino , Melopsittacus , Tempo de Reação/fisiologia
17.
Acta Acust United Acust ; 104(5): 895-899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33273896

RESUMO

Existing models to explain human psychophysics or neural responses are typically designed for a specific stimulus type and often fail for other stimuli. The ultimate goal for a neural model is to simulate responses to many stimuli, which may provide better insights into neural mechanisms. We tested the ability of modified same-frequency inhibition-excitation models for inferior colliculus neurons to simulate individual neuron responses to both amplitude-modulated sounds and tone-in-noise stimuli. Modifications to the model were guided by receptive fields computed with 2nd-order Wiener kernel analysis. This approach successfully simulated many individual neurons' responses to different types of stimuli. Other neurons suggest limitations and future directions for modeling efforts.

18.
J Acoust Soc Am ; 142(4): 2073, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092534

RESUMO

Vowels are complex sounds with four to five spectral peaks known as formants. The frequencies of the two lowest formants, F1and F2, are sufficient for vowel discrimination. Behavioral studies show that many birds and mammals can discriminate vowels. However, few studies have quantified thresholds for formant-frequency discrimination. The present study examined formant-frequency discrimination in budgerigars (Melopsittacus undulatus) and humans using stimuli with one or two formants and a constant fundamental frequency of 200 Hz. Stimuli had spectral envelopes similar to natural speech and were presented with random level variation. Thresholds were estimated for frequency discrimination of F1, F2, and simultaneous F1 and F2 changes. The same two-down, one-up tracking procedure and single-interval, two-alternative task were used for both species. Formant-frequency discrimination thresholds were as sensitive in budgerigars as in humans and followed the same patterns across all conditions. Thresholds expressed as percent frequency difference were higher for F1 than for F2, and were unchanged between stimuli with one or two formants. Thresholds for simultaneous F1 and F2 changes indicated that discrimination was based on combined information from both formant regions. Results were consistent with previous human studies and show that budgerigars provide an exceptionally sensitive animal model of vowel feature discrimination.


Assuntos
Comportamento Animal , Discriminação Psicológica , Melopsittacus , Discriminação da Altura Tonal , Acústica da Fala , Percepção da Fala , Qualidade da Voz , Estimulação Acústica , Adulto , Animais , Audiometria de Tons Puros , Limiar Auditivo , Feminino , Humanos , Masculino , Psicoacústica , Especificidade da Espécie , Adulto Jovem
19.
J Assoc Res Otolaryngol ; 18(1): 165-181, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27766433

RESUMO

Vowels make a strong contribution to speech perception under natural conditions. Vowels are encoded in the auditory nerve primarily through neural synchrony to temporal fine structure and to envelope fluctuations rather than through average discharge rate. Neural synchrony is thought to contribute less to vowel coding in central auditory nuclei, consistent with more limited synchronization to fine structure and the emergence of average-rate coding of envelope fluctuations. However, this hypothesis is largely unexplored, especially in background noise. The present study examined coding mechanisms at the level of the midbrain that support behavioral sensitivity to simple vowel-like sounds using neurophysiological recordings and matched behavioral experiments in the budgerigar. Stimuli were harmonic tone complexes with energy concentrated at one spectral peak, or formant frequency, presented in quiet and in noise. Behavioral thresholds for formant-frequency discrimination decreased with increasing amplitude of stimulus envelope fluctuations, increased in noise, and were similar between budgerigars and humans. Multiunit recordings in awake birds showed that the midbrain encodes vowel-like sounds both through response synchrony to envelope structure and through average rate. Whereas neural discrimination thresholds based on either coding scheme were sufficient to support behavioral thresholds in quiet, only synchrony-based neural thresholds could account for behavioral thresholds in background noise. These results reveal an incomplete transformation to average-rate coding of vowel-like sounds in the midbrain. Model simulations suggest that this transformation emerges due to modulation tuning, which is shared between birds and mammals. Furthermore, the results underscore the behavioral relevance of envelope synchrony in the midbrain for detection of small differences in vowel formant frequency under real-world listening conditions.


Assuntos
Limiar Auditivo , Mesencéfalo/fisiologia , Ruído , Som , Adulto , Animais , Nervo Coclear/fisiologia , Feminino , Humanos , Masculino , Melopsittacus
20.
J Neurophysiol ; 115(4): 1905-16, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26843608

RESUMO

Amplitude modulation (AM) is a crucial feature of many communication signals, including speech. Whereas average discharge rates in the auditory midbrain correlate with behavioral AM sensitivity in rabbits, the neural bases of AM sensitivity in species with human-like behavioral acuity are unexplored. Here, we used parallel behavioral and neurophysiological experiments to explore the neural (midbrain) bases of AM perception in an avian speech mimic, the budgerigar (Melopsittacus undulatus). Behavioral AM sensitivity was quantified using operant conditioning procedures. Neural AM sensitivity was studied using chronically implanted microelectrodes in awake, unrestrained birds. Average discharge rates of multiunit recording sites in the budgerigar midbrain were insufficient to explain behavioral sensitivity to modulation frequencies <100 Hz for both tone- and noise-carrier stimuli, even with optimal pooling of information across recording sites. Neural envelope synchrony, in contrast, could explain behavioral performance for both carrier types across the full range of modulation frequencies studied (16-512 Hz). The results suggest that envelope synchrony in the budgerigar midbrain may underlie behavioral sensitivity to AM. Behavioral AM sensitivity based on synchrony in the budgerigar, which contrasts with rate-correlated behavioral performance in rabbits, raises the possibility that envelope synchrony, rather than average discharge rate, might also underlie AM perception in other species with sensitive AM detection abilities, including humans. These results highlight the importance of synchrony coding of envelope structure in the inferior colliculus. Furthermore, they underscore potential benefits of devices (e.g., midbrain implants) that evoke robust neural synchrony.


Assuntos
Mesencéfalo/fisiologia , Vocalização Animal , Potenciais de Ação , Animais , Condicionamento Operante , Melopsittacus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA