Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 53(1): 75, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551728

RESUMO

BACKGROUND: We tested the hypothesis that breeding schemes with a pre-selection step, in which carriers of a lethal recessive allele (LRA) were culled, and with optimum-contribution selection (OCS) reduce the frequency of a LRA, control rate of inbreeding, and realise as much genetic gain as breeding schemes without a pre-selection step. METHODS: We used stochastic simulation to estimate true genetic gain realised at a 0.01 rate of true inbreeding (ΔFtrue) by breeding schemes that combined one of four pre-selection strategies with one of three selection strategies. The four pre-selection strategies were: (1) no carriers culled, (2) male carriers culled, (3) female carriers culled, and (4) all carriers culled. Carrier-status was known prior to selection. The three selection strategies were: (1) OCS in which [Formula: see text] was predicted and controlled using pedigree relationships (POCS), (2) OCS in which [Formula: see text] was predicted and controlled using genomic relationships (GOCS), and (3) truncation selection of parents. All combinations of pre-selection strategies and selection strategies were tested for three starting frequencies of the LRA (0.05, 0.10, and 0.15) and two linkage statuses with the locus that has the LRA being on a chromosome with or without loci affecting the breeding goal trait. The breeding schemes were simulated for 10 discrete generations (t = 1, …, 10). In all breeding schemes, ΔFtrue was calibrated to be 0.01 per generation in generations t = 4, …, 10. Each breeding scheme was replicated 100 times. RESULTS: We found no significant difference in true genetic gain from generations t = 4, …, 10 between breeding schemes with or without pre-selection within selection strategy. POCS and GOCS schemes realised similar true genetic gains from generations t = 4, …, 10. POCS and GOCS schemes realised 12% more true genetic gain from generations t = 4, …, 10 than truncation selection schemes. CONCLUSIONS: We advocate for OCS schemes with pre-selection against the LRA that cause animal suffering and high costs. At LRA frequencies of 0.10 or lower, OCS schemes in which male carriers are culled reduce the frequency of LRA, control rate of inbreeding, and realise no significant reduction in true genetic gain compared to OCS schemes without pre-selection against LRA.


Assuntos
Alelos , Cruzamento , Genes Letais , Genes Recessivos , Modelos Genéticos , Seleção Genética , Abate de Animais , Animais , Feminino , Frequência do Gene , Endogamia , Masculino , Linhagem , Processos Estocásticos
2.
Genet Sel Evol ; 53(1): 1, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397289

RESUMO

BACKGROUND: Social genetic effects (SGE) are the effects of the genotype of one animal on the phenotypes of other animals within a social group. Because SGE contribute to variation in economically important traits for pigs, the inclusion of SGE in statistical models could increase responses to selection (RS) in breeding programs. In such models, increasing the relatedness of members within groups further increases RS when using pedigree-based relationships; however, this has not been demonstrated with genomic-based relationships or with a constraint on inbreeding. In this study, we compared the use of statistical models with and without SGE and compared groups composed at random versus groups composed of families in genomic selection breeding programs with a constraint on the rate of inbreeding. RESULTS: When SGE were of a moderate magnitude, inclusion of SGE in the statistical model substantially increased RS when SGE were considered for selection. However, when SGE were included in the model but not considered for selection, the increase in RS and in accuracy of predicted direct genetic effects (DGE) depended on the correlation between SGE and DGE. When SGE were of a low magnitude, inclusion of SGE in the model did not increase RS, probably because of the poor separation of effects and convergence issues of the algorithms. Compared to a random group composition design, groups composed of families led to higher RS. The difference in RS between the two group compositions was slightly reduced when using genomic-based compared to pedigree-based relationships. CONCLUSIONS: The use of a statistical model that includes SGE can substantially improve response to selection at a fixed rate of inbreeding, because it allows the heritable variation from SGE to be accounted for and capitalized on. Compared to having random groups, family groups result in greater response to selection in the presence of SGE but the advantage of using family groups decreases when genomic-based relationships are used.


Assuntos
Interação Gene-Ambiente , Modelos Estatísticos , Seleção Artificial , Meio Social , Suínos/genética , Animais , Endogamia , Modelos Genéticos , Seleção Genética
3.
Front Genet ; 11: 345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425971

RESUMO

We tested the consequences of using alternative genomic relationship matrices to predict genomic breeding values (GEBVs) and control of coancestry in optimum contribution selection, where the relationship matrix used to calculate GEBVs was not necessarily the same as that used to control coancestry. A stochastic simulation study was carried out to investigate genetic gain and true genomic inbreeding in breeding schemes that applied genomic optimum contribution selection (GOCS) with different genomic relationship matrices. Three genomic-relationship matrices were used to predict the GEBVs based on three information sources: markers (G M), QTL (G Q ), and markers and QTL (G A). Strictly, G Q is not possible to implement in practice since we do not know the quantitative trait loci (QTL) positions, but more and more information is becoming available especially about the largest QTL. Two genomic-relationship matrices were used to control coancestry: G M and G A. Three genetic architectures were simulated: with 7702, 1000, and 500 QTLs together with 54,218 markers. Selection was for a single trait with heritability 0.2. All selection candidates were phenotyped and genotyped before selection. With 7702 QTL, there were no significant differences in rates of genetic gain at the same rate of true inbreeding using different genomic relationship matrices in GOCS. However, as the number of QTLs was reduced to 1000, prediction of GEBVs using a genomic relationship matrix constructed based on G Q and control of coancestry using G M realized 29.7% higher genetic gain than using G M for both prediction and control of coancestry. Forty-three percent of this increased rate of genetic gain was due to increased accuracies of GEBVs. These findings indicate that with large numbers of QTL, it is not critical what information, i.e., markers or QTL, is used to construct genomic-relationship matrices. However, it becomes critical with small numbers of QTL. This highlights the importance of using genomic-relationship matrices that focus on QTL regions for GEBV estimation when the number of QTL is small in GOCS. Relationships used to control coancestry are preferably based on marker data.

4.
Front Genet ; 11: 251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373152

RESUMO

Genotype × environment interaction (G × E) is of increasing importance for dairy cattle breeders due to international multiple-environment selection of animals as well as the differentiation of production environments within countries. This theoretical simulation study tested the hypothesis that genomic selection (GS) breeding programs realize larger genetic benefits by cooperation in the presence of G × E than conventional pedigree-based selection (PS) breeding programs. We simulated two breeding programs each with their own cattle population and environment. Two populations had either equal or unequal population sizes. Selection of sires was done either across environments (cooperative) or within their own environment (independent). Four scenarios, (GS/PS) × (cooperative/independent), were performed. The genetic correlation (r g ) between the single breeding goal trait expressed in two environments was varied between 0.5 and 0.9. We compared scenarios for genetic gain, rate of inbreeding, proportion of selected external sires, and the split-point r g that is the lowest value of r g for long-term cooperation. Between two equal-sized populations, cooperative GS breeding programs achieved a maximum increase of 19.3% in genetic gain and a maximum reduction of 24.4% in rate of inbreeding compared to independent GS breeding programs. The increase in genetic gain and the reduction in rate of inbreeding realized by GS breeding programs with cooperation were respectively at maximum 9.7% and 24.7% higher than those realized by PS breeding programs with cooperation. Secondly, cooperative GS breeding programs allowed a slightly lower split-point r g than cooperative PS breeding programs (0.85∼0.875 vs ≥ 0.9). Between two unequal-sized populations, cooperative GS breeding programs realized higher increase in genetic gain and showed greater probability for long-term cooperation than cooperative PS breeding programs. Secondly, cooperation using GS were more beneficial to the small population while also beneficial but much less to the large population. In summary, by cooperation in the presence of G × E, GS breeding programs realize larger improvements in terms of the genetic gain and rate of inbreeding, and have greater possibility of long-term cooperation than conventional PS breeding programs. Therefore, we recommend cooperative GS breeding programs in situations with mild to moderate G × E, depending on the sizes of two populations.

6.
Genet Sel Evol ; 51(1): 39, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286868

RESUMO

BACKGROUND: We tested the premise that optimum-contribution selection with pedigree relationships to control inbreeding (POCS) realises at least as much true genetic gain as optimum-contribution selection with genomic relationships (GOCS) at the same rate of true inbreeding. METHODS: We used stochastic simulation to estimate rates of true genetic gain realised by POCS and GOCS at a 0.01 rate of true inbreeding in three breeding schemes with best linear unbiased predictions of breeding values based on pedigree (PBLUP) and genomic (GBLUP) information. The three breeding schemes differed in number of matings and litter size. Selection was for a single trait with a heritability of 0.2. The trait was controlled by 7702 biallelic quantitative-trait loci (QTL) that were distributed across a 30-M genome. The genome contained 54,218 biallelic markers that were used in GOCS and GBLUP. A total of 6012 identity-by-descent loci were placed across the genome in base populations. Unique alleles at these loci were used to calculate rates of true inbreeding. Breeding schemes were run for 10 discrete generations. Selection candidates were genotyped and phenotyped before selection. RESULTS: POCS realised more true genetic gain than GOCS at a 0.01 rate of true inbreeding in all combinations of breeding scheme and prediction method. POCS realised 14 to 33% more true genetic gain than GOCS with PBLUP in the three breeding schemes. It realised 1.5 to 5.7% more true genetic gain than GOCS with GBLUP. CONCLUSIONS: POCS realised more true genetic gain than GOCS because it managed expected genetic drift without restricting selection at QTL. By contrast, GOCS penalised changes in allele frequencies at markers that were generated by genetic drift and selection. Because these marker alleles were in linkage disequilibrium with QTL alleles, GOCS restricted changes in allele frequencies at QTL. This provides little incentive to use GOCS and highlights that we have more to learn before we can control inbreeding using genomic relationships in selective-breeding schemes. Until we can do so, POCS remains a worthy method of optimum-contribution selection because it realises more true genetic gain than GOCS at the same rate of true inbreeding.


Assuntos
Endogamia , Linhagem , Alelos , Animais , Simulação por Computador , Feminino , Frequência do Gene , Genoma , Masculino , Processos Estocásticos
7.
Anim Reprod Sci ; 207: 36-43, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31213331

RESUMO

Follicle-stimulating hormone (FSH) stimulates granulosa cell proliferation and controls the development and maturation of oocytes. In this study with Rex rabbit, there was exploration of the relationships between reproductive traits and SNPs and haplotypes of FSHß, and tested whether FSHß SNPs would segregate between two lines, using 70 females from the White line and 100 females from the Beaver line. Three SNPs (FSH2, FSH30, FSH31) in exon1 and exon3 of FSHß were strongly associated with reproductive traits in the combined population. For FSH2, the GG variant was associated with greater (P <  0.05) values for total number born (TNB) and number born alive (NBA), compared to those with the TT variant. For FSH30, for the AA variant there was greater (P <  0.05) values for TNB and NBA than with the GG and AG variants. For FSH31, the GG variant was associated with greater (P <  0.05) values for TNB, litter weight at birth (LWB) and litter size at 21 days of age (LS21), than the AG variant, and with greater (P < 0.01) values for NBA than the AG variant. When analyzed separately, FSH2 SNP was associated with LW21 in the Beaver line (P <  0.05), whereas FSH30 and FSH31 SNPs were associated with TNB and NBA in the White line (P <  0.05). It is concluded that genetic variation in FSHß gene is associated with reproductive traits in the Rex rabbit, therefore, the FSH2, FSH30 and FSH31 SNPs can be used as molecular markers in genetic selection of rabbits.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Coelhos/genética , Reprodução/genética , Animais , Feminino , Estudos de Associação Genética/veterinária , Polimorfismo de Nucleotídeo Único , Gravidez , Característica Quantitativa Herdável , Coelhos/fisiologia , Seleção Artificial/genética
8.
J Hered ; 108(3): 318-327, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082328

RESUMO

Under the finite-locus model in the absence of mutation, the additive genetic variation is expected to decrease when directional selection is acting on a population, according to quantitative-genetic theory. However, some theoretical studies of selection suggest that the level of additive variance can be sustained or even increased when nonadditive genetic effects are present. We tested the hypothesis that finite-locus models with both additive and nonadditive genetic effects maintain more additive genetic variance (VA) and realize larger medium- to long-term genetic gains than models with only additive effects when the trait under selection is subject to truncation selection. Four genetic models that included additive, dominance, and additive-by-additive epistatic effects were simulated. The simulated genome for individuals consisted of 25 chromosomes, each with a length of 1 M. One hundred bi-allelic QTL, 4 on each chromosome, were considered. In each generation, 100 sires and 100 dams were mated, producing 5 progeny per mating. The population was selected for a single trait (h2 = 0.1) for 100 discrete generations with selection on phenotype or BLUP-EBV. VA decreased with directional truncation selection even in presence of nonadditive genetic effects. Nonadditive effects influenced long-term response to selection and among genetic models additive gene action had highest response to selection. In addition, in all genetic models, BLUP-EBV resulted in a greater fixation of favorable and unfavorable alleles and higher response than phenotypic selection. In conclusion, for the schemes we simulated, the presence of nonadditive genetic effects had little effect in changes of additive variance and VA decreased by directional selection.


Assuntos
Modelos Genéticos , Locos de Características Quantitativas , Seleção Genética , Algoritmos , Genes Dominantes , Variação Genética , Genética Populacional , Genoma , Genótipo , Fenótipo
9.
Genet Sel Evol ; 48(1): 48, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27357825

RESUMO

BACKGROUND: In many animal breeding programs, with the increasing number of genotyped animals, estimation of genomic breeding values by the single-step method is becoming limited by excessive computing requirements. A recently proposed algorithm for proven and young animals (APY) is an approximation that reduces computing time drastically by dividing genotyped animals into core and non-core animals, with only computations for core animals being time-consuming. We hypothesized that choosing core animals based on representing all generations, minimizing the relatedness within the core group, or maximizing the number of genotyped offspring, would result in greater accuracies of estimated breeding values (EBV). METHODS: We compared eight different core groups for the three pig breeds DanAvl Duroc, DanAvl Landrace and DanAvl Yorkshire. These eight sparse approximations of the single-step method were evaluated based on correlations of EBV for genotyped animals obtained from the sparse methods with those obtained from the usual version of the single-step method. We used a single-trait model with daily gain as trait. RESULTS: For core groups that distributed animals across generations, correlations for genotyped animals (from 0.977 to 0.989) were higher than for those that did not distribute core animals across generations (from 0.934 to 0.956). For core groups that maximized the number of genotyped offspring, correlations for genotyped animals (from 0.983 to 0.989) were higher than for other core groups (from 0.934 to 0.981). There was no clear association between low relatedness within the core group and accuracy of approximations. CONCLUSIONS: We found that for core groups that represent all generations and that maximize the number of genotyped offspring, accurate approximations of EBV were obtained. However, we did not find a clear association between accuracy and relatedness within the core group. For the APY method, this is the first study that reports systematic criteria for the creation of core groups that result in more accurate EBV than a similar-sized random core group. Random core groups only ensure across-generation representation. Therefore, we recommend choosing a core group that represents all generations and that maximizes the number of genotyped offspring for single-step genomic evaluation using the APY method.


Assuntos
Cruzamento/métodos , Genômica/métodos , Modelos Genéticos , Sus scrofa/genética , Algoritmos , Animais , Genótipo
10.
Genet Sel Evol ; 48(1): 40, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27276993

RESUMO

BACKGROUND: In pig breeding, selection is usually carried out in purebred populations, although the final goal is to improve crossbred performance. Genomic selection can be used to select purebred parental lines for crossbred performance. Dominance is the likely genetic basis of heterosis and explicitly including dominance in the genomic selection model may be an advantage when selecting purebreds for crossbred performance. Our objectives were two-fold: (1) to compare the predictive ability of genomic prediction models with additive or additive plus dominance effects, when the validation criterion is crossbred performance; and (2) to compare the use of two pure line reference populations to a single combined reference population. METHODS: We used data on litter size in the first parity from two pure pig lines (Landrace and Yorkshire) and their reciprocal crosses. Training was performed (1) separately on pure Landrace (2085) and Yorkshire (2145) sows and (2) the two combined pure lines (4230), which were genotyped for 38 k single nucleotide polymorphisms (SNPs). Prediction accuracy was measured as the correlation between genomic estimated breeding values (GEBV) of pure line boars and mean corrected crossbred-progeny performance, divided by the average accuracy of mean-progeny performance. We evaluated a model with additive effects only (MA) and a model with both additive and dominance effects (MAD). Two types of GEBV were computed: GEBV for purebred performance (GEBV) based on either the MA or MAD models, and GEBV for crossbred performance (GEBV-C) based on the MAD. GEBV-C were calculated based on SNP allele frequencies of genotyped animals in the opposite line. RESULTS: Compared to MA, MAD improved prediction accuracy for both lines. For MAD, GEBV-C improved prediction accuracy compared to GEBV. For Landrace (Yorkshire) boars, prediction accuracies were equal to 0.11 (0.32) for GEBV based on MA, and 0.13 (0.34) and 0.14 (0.36) for GEBV and GEBV-C based on MAD, respectively. Combining animals from both lines into a single reference population yielded higher accuracies than training on each pure line separately. In conclusion, the use of a dominance model increased the accuracy of genomic predictions of crossbred performance based on purebred data.


Assuntos
Cruzamento , Genômica , Modelos Genéticos , Sus scrofa/genética , Animais , Cruzamentos Genéticos , Feminino , Frequência do Gene , Genótipo , Modelos Lineares , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
BMC Genet ; 17: 11, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728402

RESUMO

BACKGROUND: In animal breeding, genetic variance for complex traits is often estimated using linear mixed models that incorporate information from single nucleotide polymorphism (SNP) markers using a realized genomic relationship matrix. In such models, individual genetic markers are weighted equally and genomic variation is treated as a "black box." This approach is useful for selecting animals with high genetic potential, but it does not generate or utilise knowledge of the biological mechanisms underlying trait variation. Here we propose a linear mixed-model approach that can evaluate the collective effects of sets of SNPs and thereby open the "black box." The described genomic feature best linear unbiased prediction (GFBLUP) model has two components that are defined by genomic features. RESULTS: We analysed data on average daily gain, feed efficiency, and lean meat percentage from 3,085 Duroc boars, along with genotypes from a 60 K SNP chip. In addition information on known quantitative trait loci (QTL) from the animal QTL database was integrated in the GFBLUP as a genomic feature. Our results showed that the most significant QTL categories were indeed biologically meaningful. Additionally, for high heritability traits, prediction accuracy was improved by the incorporation of biological knowledge in prediction models. A simulation study using the real genotypes and simulated phenotypes demonstrated challenges regarding detection of causal variants in low to medium heritability traits. CONCLUSIONS: The GFBLUP model showed increased predictive ability when enough causal variants were included in the genomic feature to explain over 10 % of the genomic variance, and when dilution by non-causal markers was minimal. In the observed data set, predictive ability was increased by the inclusion of prior QTL information obtained outside the training data set, but only for the trait with highest heritability.


Assuntos
Modelos Genéticos , Locos de Características Quantitativas , Sus scrofa/genética , Animais , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Reprodutibilidade dos Testes
12.
Genet Sel Evol ; 47: 21, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25887703

RESUMO

BACKGROUND: We tested the hypothesis that optimum-contribution selection (OCS) with restrictions imposed during optimisation realises most of the long-term genetic gain realised by OCS without restrictions. METHODS: We used stochastic simulation to estimate long-term rates of genetic gain realised by breeding schemes that applied OCS without and with restrictions imposed during optimisation, where long-term refers to generations 23 to 25 (approximately). Six restrictions were imposed. Five of these removed solutions from the solution space. The sixth removed records of selection decisions made at earlier selection times. We also simulated a conventional breeding scheme with truncation selection as a reference point. Generations overlapped, selection was for a single trait, and the trait was observed for all selection candidates prior to selection. RESULTS: OCS with restrictions realised 67 to 99% of the additional gain realised by OCS without restrictions, where additional gain was the difference in the long-term rates of genetic gain realised by OCS without restrictions and our reference point with truncation selection. The only exceptions were those restrictions that removed all solutions near the optimum solution from the solution space and the restriction that removed records of selection decisions made at earlier selection times. Imposing these restrictions realised only -12 to 46% of the additional gain. CONCLUSIONS: Most of the long-term genetic gain realised by OCS without restrictions can be realised by OCS with restrictions imposed during optimisation, provided the restrictions do not remove all solutions near the optimum from the solution space and do not remove records of earlier selection decisions. In breeding schemes where OCS cannot be applied optimally because of biological and logistical restrictions, OCS with restrictions provides a useful alternative. Not only does it realise most of the long-term genetic gain, OCS with restrictions enables OCS to be tailored to individual breeding schemes.


Assuntos
Cruzamento/métodos , Modelos Genéticos , Seleção Genética , Animais , Simulação por Computador , Feminino , Masculino
13.
PLoS One ; 7(9): e45293, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028912

RESUMO

Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions.


Assuntos
Marcadores Genéticos , Genoma , Padrões de Herança , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Suínos/genética , Animais , Cruzamento , Epistasia Genética , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Modelos Lineares , Masculino , Fenótipo , Aumento de Peso
14.
Genet Sel Evol ; 43: 38, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22070746

RESUMO

BACKGROUND: Genomic selection can be implemented by a multi-step procedure, which requires a response variable and a statistical method. For pure-bred pigs, it was hypothesised that deregressed estimated breeding values (EBV) with the parent average removed as the response variable generate higher reliabilities of genomic breeding values than EBV, and that the normal, thick-tailed and mixture-distribution models yield similar reliabilities. METHODS: Reliabilities of genomic breeding values were estimated with EBV and deregressed EBV as response variables and under the three statistical methods, genomic BLUP, Bayesian Lasso and MIXTURE. The methods were examined by splitting data into a reference data set of 1375 genotyped animals that were performance tested before October 2008, and 536 genotyped validation animals that were performance tested after October 2008. The traits examined were daily gain and feed conversion ratio. RESULTS: Using deregressed EBV as the response variable yielded 18 to 39% higher reliabilities of the genomic breeding values than using EBV as the response variable. For daily gain, the increase in reliability due to deregression was significant and approximately 35%, whereas for feed conversion ratio it ranged between 18 and 39% and was significant only when MIXTURE was used. Genomic BLUP, Bayesian Lasso and MIXTURE had similar reliabilities. CONCLUSIONS: Deregressed EBV is the preferred response variable, whereas the choice of statistical method is less critical for pure-bred pigs. The increase of 18 to 39% in reliability is worthwhile, since the reliabilities of the genomic breeding values directly affect the returns from genomic selection.


Assuntos
Cruzamento , Genômica/métodos , Sus scrofa/genética , Animais , Feminino , Genótipo , Masculino , Modelos Genéticos , Modelos Estatísticos , Linhagem , Fenótipo , Sus scrofa/crescimento & desenvolvimento
15.
Mol Ecol Resour ; 11 Suppl 1: 67-70, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21429163

RESUMO

We establish a TaqMan-based assay panel for genotyping single-nucleotide polymorphisms in rainbow trout and steelhead (Oncorhynchus mykiss). We develop 22 novel single-nucleotide polymorphism markers based on new steelhead sequence data and on assays from sister taxa. Additionally, we adapt 154 previously developed markers to the TaqMan platform. At the beginning of this study, 59 SNPs with TaqMan assays were available to the scientific community. By adding 176 additional TaqMan assays to this number, we greatly expand the biological applications of TaqMan genotyping within both population genetics and quantitative genetics.


Assuntos
Oncorhynchus mykiss/genética , Polimorfismo de Nucleotídeo Único , Animais , Mapeamento Cromossômico , Dinamarca , Feminino , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Masculino , Análise de Sequência de DNA , Washington
16.
Immunogenetics ; 63(5): 309-17, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21274526

RESUMO

Mannose-binding lectin (MBL) is a collagenous lectin that kills a wide range of pathogenic microbes through complement activation. The MBL1 and MBL2 genes encode MBL-A and MBL-C, respectively. MBL deficiency in humans is associated with higher susceptibility to viral as well as bacterial infections. A number of single nucleotide polymorphisms (SNP) have been identified in the collagen-like domain of the human MBL gene, of which several are strongly associated with decreased concentrations of MBL in serum. In this study, we have identified a number of SNPs in the porcine MBL-A gene. Sequence comparisons identified a total of 14 SNPs, eight of which were found in exons and six in introns. Four of the eight exon-located SNPs were non-synonymous. Sequence data from several Duroc and Landrace pigs identified four different haplotypes. One haplotype was found in Duroc pigs only, and three haplotypes were found in the Landrace pigs. One of the identified haplotypes was associated with low concentration of MBL-A in serum. The concentration of MBL-A in serum was further assessed in a large number of Duroc and Landrace boars to address its correlation with disease frequency. The MBL-A concentration in Duroc boars showed one single population, whereas Landrace boars showed four distinct populations for MBL-A concentration. The Landrace boars were finally assessed for disease incidence, and the association with the concentration of MBL-A in serum was investigated. No association between MBL and disease incidence was found in this study.


Assuntos
Lectina de Ligação a Manose/sangue , Lectina de Ligação a Manose/genética , Suínos/genética , Suínos/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Éxons , Predisposição Genética para Doença , Haplótipos/imunologia , Íntrons , Masculino , Dados de Sequência Molecular , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único
17.
Immunogenetics ; 58(2-3): 129-37, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16518621

RESUMO

Mannan-binding lectin (MBL) is an innate immune collectin present in the serum of humans and many farm animals. This oligomeric pattern-recognition protein effectively binds to the glycoconjugate arrays present on the surfaces of microorganisms and activates the complement system to enhance pathogen killing and clearance. MBL deficiency is often associated with immunodeficiency in humans. Although two MBLs (MBL-A and MBL-C) have been characterized in various species, the identity of porcine MBL (pMBL) was not clearly defined. In this study, we purified an MBL from porcine serum by mannose affinity, ion exchange, and size exclusion chromatography and determined many of its characteristics. Based on the N-terminal sequence, multiple sequence alignment, and relative affinities to various carbohydrate ligands, we propose that the MBL purified in this study is pMBL-A. We have generated antibodies to this protein and established an immunoassay to quantify pMBL-A in serum. Using this assay, we found breed differences in pMBL-A concentration distributions and heritability estimates. In the Duroc breed (n=588), pMBL-A concentrations show a unimodal distribution with a mean of 9,125 ng/ml. In contrast, the pMBL-A concentration distributions in the Landrace breed (n=533) show three distinct mean values: 301, 2,385, and 11,507 ng/ml. Furthermore, heritability calculations based on an additive genetic variance model with no fixed effects indicate that serum pMBL-A concentration is highly heritable in the Landrace (h (2)=0.8) but not in the Duroc breed (h (2)=0.15). These genetic differences may be useful in selecting breeding pigs for improved disease resistance.


Assuntos
Cruzamento , Imunidade Inata/genética , Lectina de Ligação a Manose/sangue , Lectina de Ligação a Manose/genética , Sus scrofa/imunologia , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Lectina de Ligação a Manose/química , Dados de Sequência Molecular , Monossacarídeos/química , Sus scrofa/sangue , Sus scrofa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA