Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Sci Rep ; 14(1): 15313, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961125

RESUMO

Epileptogenesis is the process by which a normal brain becomes hyperexcitable and capable of generating spontaneous recurrent seizures. The extensive dysregulation of gene expression associated with epileptogenesis is shaped, in part, by microRNAs (miRNAs) - short, non-coding RNAs that negatively regulate protein levels. Functional miRNA-mediated regulation can, however, be difficult to elucidate due to the complexity of miRNA-mRNA interactions. Here, we integrated miRNA and mRNA expression profiles sampled over multiple time-points during and after epileptogenesis in rats, and applied bi-clustering and Bayesian modelling to construct temporal miRNA-mRNA-mRNA interaction networks. Network analysis and enrichment of network inference with sequence- and human disease-specific information identified key regulatory miRNAs with the strongest influence on the mRNA landscape, and miRNA-mRNA interactions closely associated with epileptogenesis and subsequent epilepsy. Our findings underscore the complexity of miRNA-mRNA regulation, can be used to prioritise miRNA targets in specific systems, and offer insights into key regulatory processes in epileptogenesis with therapeutic potential for further investigation.


Assuntos
Epilepsia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs , RNA Mensageiro , Convulsões , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Convulsões/genética , Convulsões/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Masculino , Regulação da Expressão Gênica , Teorema de Bayes , Modelos Animais de Doenças , Transcriptoma
2.
Fluids Barriers CNS ; 21(1): 52, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898501

RESUMO

Claudin-5 is one of the most essential tight junction proteins at the blood-brain barrier. A single nucleotide polymorphism rs10314 is located in the 3'-untranslated region of claudin-5 and has been shown to be a risk factor for schizophrenia. Here, we show that the pumilio RNA-binding protein, pumilio-1, is responsible for rs10314-mediated claudin-5 regulation. The RNA sequence surrounding rs10314 is highly homologous to the canonical pumilio-binding sequence and claudin-5 mRNA with rs10314 produces 25% less protein due to its inability to bind to pumilio-1. Pumilio-1 formed cytosolic granules under stress conditions and claudin-5 mRNA appeared to preferentially accumulate in these granules. Added to this, we observed granular pumilio-1 in endothelial cells in human brain tissues from patients with psychiatric disorders or epilepsy with increased/accumulated claudin-5 mRNA levels, suggesting translational claudin-5 suppression may occur in a brain-region specific manner. These findings identify a key regulator of claudin-5 translational processing and how its dysregulation may be associated with neurological and neuropsychiatric disorders.


Assuntos
Barreira Hematoencefálica , Claudina-5 , Proteínas de Ligação a RNA , Humanos , Claudina-5/metabolismo , Claudina-5/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Barreira Hematoencefálica/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Animais , Biossíntese de Proteínas/fisiologia , Células Endoteliais/metabolismo
3.
Epilepsia ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829313

RESUMO

Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.

4.
Brain Behav Immun ; 120: 121-140, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777288

RESUMO

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.

5.
Epilepsia ; 65(5): 1451-1461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491957

RESUMO

OBJECTIVE: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Hipocampo , Esclerose , Humanos , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Esclerose/genética , Esclerose/patologia , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/patologia , Feminino , Masculino , Adulto , Adulto Jovem , Adolescente , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/patologia , Criança , Filaminas/genética , Pessoa de Meia-Idade , Pré-Escolar , Variação Genética/genética , Esclerose Hipocampal
6.
BMC Neurol ; 24(1): 105, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539132

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a leading cause of non-traumatic disability in young adults. Accumulating evidence indicates early diagnosis and early treatment improves long-term outcomes. However, the MS diagnostic pathway is increasingly complex, and delays may occur at several stages. Factors causing delays remain understudied. We aim to quantify the time taken for MS to be diagnosed, and characterise the diagnostic pathway and initial care provided, in the United Kingdom (UK) and Republic of Ireland (ROI). METHODS: Delays In MultiplE Sclerosis diagnosis (DIMES) in the UK and ROI is a multicentre, observational, retrospective study that will be conducted via the Neurology and Neurosurgery Interest Group (NANSIG) collaborative network. Any hospital in the UK and ROI providing an MS diagnostic service is eligible to participate. Data on consecutive individuals newly diagnosed with MS between 1st July 2022 and 31st December 2022 will be collected. The primary outcomes are 1) time from symptoms/signs prompting referral to neurology, to MS diagnosis; and 2) time from referral to neurology for suspected MS, to MS diagnosis. Secondary outcomes include: MS symptoms, referring specialties, investigations performed, neurology appointments, functional status, use of disease modifying treatments, and support at diagnosis including physical activity, and follow up. Demographic characteristics of people newly diagnosed with MS will be summarised, adherence to quality standards summarised as percentages, and time-to-event variables presented with survival curves. Multivariable models will be used to investigate the association of demographic and clinical factors with time to MS diagnosis, as defined in our primary outcomes. DISCUSSION: DIMES aims to be the largest multicentre study of the MS diagnostic pathway in the UK and ROI. The proposed data collection provides insights that cannot be provided from contemporary registries, and the findings will inform approaches to MS services nationally in the future.


Assuntos
Esclerose Múltipla , Adulto Jovem , Humanos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/tratamento farmacológico , Estudos Retrospectivos , Irlanda/epidemiologia , Reino Unido/epidemiologia , Estudos Observacionais como Assunto , Estudos Multicêntricos como Assunto
7.
Brain Commun ; 6(1): fcae017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317856

RESUMO

The immunoproteasome is a central protease complex required for optimal antigen presentation. Immunoproteasome activity is also associated with facilitating the degradation of misfolded and oxidized proteins, which prevents cellular stress. While extensively studied during diseases with increasing evidence suggesting a role for the immunoproteasome during pathological conditions including neurodegenerative diseases, this enzyme complex is believed to be mainly not expressed in the healthy brain. In this study, we show an age-dependent increase in polyubiquitination in the brains of wild-type mice, accompanied by an induction of immunoproteasomes, which was most prominent in neurons and microglia. In contrast, mice completely lacking immunoproteasomes (triple-knockout mice), displayed a strong increase in polyubiquitinated proteins already in the young brain and developed spontaneous epileptic seizures, beginning at the age of 6 months. Injections of kainic acid led to high epilepsy-related mortality of aged triple-knockout mice, confirming increased pathological hyperexcitability states. Notably, the expression of the immunoproteasome was reduced in the brains of patients suffering from epilepsy. In addition, the aged triple-knockout mice showed increased anxiety, tau hyperphosphorylation and degeneration of Purkinje cell population with the resulting ataxic symptoms and locomotion alterations. Collectively, our study suggests a critical role for the immunoproteasome in the maintenance of a healthy brain during ageing.

8.
Brain Commun ; 6(1): fcad355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204971

RESUMO

MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape. RNA editing has been studied for the mRNA landscape but the extent to which microRNA editing occurs in human temporal lobe epilepsy is unknown. Here, we used small RNA-sequencing data to characterize the identity and extent of microRNA editing in human temporal lobe epilepsy brain samples. This detected low-to-high editing in over 40 of the identified microRNAs. Among microRNA exhibiting the highest editing was miR-376a-3p, which was edited in the seed region and this was predicted to significantly change the target pool. The edited form was expressed at lower levels in human temporal lobe epilepsy samples. We modelled the shift in editing levels of miR-376a-3p in human-induced pluripotent stem cell-derived neurons. Reducing levels of the edited form of miR-376a-3p using antisense oligonucleotides resulted in extensive gene expression changes, including upregulation of mitochondrial and metabolism-associated pathways. Together, these results show that differential editing of microRNAs may re-direct targeting and result in altered functions relevant to the pathophysiology of temporal lobe epilepsy and perhaps other disorders of neuronal hyperexcitability.

9.
Nucleic Acid Ther ; 34(1): 4-11, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174996

RESUMO

RNA-based medicines have potential to treat a large variety of diseases, and research in the field is very dynamic. Proactively, The European Medicines Agency (EMA) organized a virtual conference on February 2, 2023 to promote the development of RNA-based medicines. The initiative addresses the goal of the EMA Regulatory Science Strategy to 2025 to "catalyse the integration of science and technology in medicines development." The conference focused on RNA technologies (excluding RNA vaccines) and involved different stakeholders, including representatives from academia, industry, regulatory authorities, and patient organizations. The conference comprised presentations and discussion sessions conducted by panels of subject matter experts. In this meeting report, we summarize the presentations and recap the main themes of the panel discussions.


Assuntos
RNA , Humanos , Indústria Farmacêutica , Congressos como Assunto , RNA/uso terapêutico
10.
Epilepsy Behav ; 148: 109465, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844441

RESUMO

PURPOSE: Benign Epilepsy with Centro-Temporal Spikes (BECTS) is a pediatric epilepsy with typically good seizure control. Although BECTS may increase patients' risk of developing neurological comorbidities, their clinical care and short-term outcomes are poorly quantified. METHODS: We retrospectively assessed adherence to National Institute for Health and Care Excellence (NICE) guidelines relating to specialist referral, electroencephalogram (EEG) conduct and annual review in the care of patients with BECTS, and measured their seizure, neurodevelopmental and learning outcomes at three years post-diagnosis. RESULTS: Across ten centers in England, we identified 124 patients (74 male) diagnosed with BECTS between 2015 and 2017. Patients had a mean age at diagnosis of 8.0 (95% CI = 7.6-8.4) years. 24/95 (25%) patients were seen by a specialist within two weeks of presentation; 59/100 (59%) received an EEG within two weeks of request; and 59/114 (52%) were reviewed annually. At three years post-diagnosis, 32/114 (28%) experienced ongoing seizures; 26/114 (23%) had reported poor school progress; 15/114 (13%) were diagnosed with a neurodevelopmental disorder (six autism spectrum disorder, six attention-deficit/hyperactivity disorder); and 10/114 (8.8%) were diagnosed with a learning difficulty (three processing deficit, three dyslexia). Center-level random effects models estimated neurodevelopmental diagnoses in 9% (95% CI: 2-16%) of patients and learning difficulty diagnoses in 7% (95% CI: 2-12%). CONCLUSIONS: In this multicenter work, we found variable adherence to NICE guidelines in the care of patients with BECTS and identified a notable level of neurological comorbidity. Patients with BECTS may benefit from enhanced cognitive and behavioral assessment and monitoring.


Assuntos
Transtorno do Espectro Autista , Epilepsia Rolândica , Humanos , Criança , Masculino , Epilepsia Rolândica/diagnóstico , Epilepsia Rolândica/epidemiologia , Epilepsia Rolândica/psicologia , Estudos Retrospectivos , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Convulsões , Eletroencefalografia
11.
Front Mol Neurosci ; 16: 1230942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808470

RESUMO

The diagnosis of epilepsy is complex and challenging and would benefit from the availability of molecular biomarkers, ideally measurable in a biofluid such as blood. Experimental and human epilepsy are associated with altered brain and blood levels of various microRNAs (miRNAs). Evidence is lacking, however, as to whether any of the circulating pool of miRNAs originates from the brain. To explore the link between circulating miRNAs and the pathophysiology of epilepsy, we first sequenced argonaute 2 (Ago2)-bound miRNAs in plasma samples collected from mice subject to status epilepticus induced by intraamygdala microinjection of kainic acid. This identified time-dependent changes in plasma levels of miRNAs with known neuronal and microglial-cell origins. To explore whether the circulating miRNAs had originated from the brain, we generated mice expressing FLAG-Ago2 in neurons or microglia using tamoxifen-inducible Thy1 or Cx3cr1 promoters, respectively. FLAG immunoprecipitates from the plasma of these mice after seizures contained miRNAs, including let-7i-5p and miR-19b-3p. Taken together, these studies confirm that a portion of the circulating pool of miRNAs in experimental epilepsy originates from the brain, increasing support for miRNAs as mechanistic biomarkers of epilepsy.

13.
Stem Cell Reports ; 18(9): 1870-1883, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37595581

RESUMO

Sporadic amyotrophic lateral sclerosis (sALS) is the majority of ALS, and the lack of appropriate disease models has hindered its research. Induced pluripotent stem cell (iPSC) technology now permits derivation of iPSCs from somatic cells of sALS patients to investigate disease phenotypes and mechanisms. Most existing differentiation protocols are time-consuming or low efficient in generating motor neurons (MNs). Here we report a rapid and simple protocol to differentiate MNs in monolayer culture using small molecules, which led to nearly pure neural stem cells in 6 days, robust OLIG2+ pMNs (73%-91%) in 12 days, enriched CHAT+ cervical spinal MNs (sMNs) (88%-97%) in 18 days, and functionally mature sMNs in 28 days. This simple and reproducible protocol permitted the identification of hyperexcitability phenotypes in our sALS iPSC-derived sMNs, and its application in neurodegenerative diseases should facilitate in vitro disease modeling, drug screening, and the development of cell therapy.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Osteocondrodisplasias , Humanos , Neurônios Motores , Autofagia , Diferenciação Celular
14.
Epilepsia ; 64(10): 2827-2840, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543852

RESUMO

OBJECTIVE: Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development. The cytoplasmic polyadenylation element-binding protein CPEB4 was found to drive epilepsy-induced poly(A) tail changes, and mice lacking CPEB4 develop a more severe seizure and epilepsy phenotype. The mechanisms controlling CPEB4 function and the downstream pathways that influence the recurrence of spontaneous seizures in epilepsy remain poorly understood. METHODS: Status epilepticus was induced in wild-type and CPEB4-deficient male mice via an intra-amygdala microinjection of kainic acid. CLOCK binding to the CPEB4 promoter was analyzed via chromatin immunoprecipitation assay and melatonin levels via high-performance liquid chromatography in plasma. RESULTS: Here, we show increased binding of CLOCK to recognition sites in the CPEB4 promoter region during status epilepticus in mice and increased Cpeb4 mRNA levels in N2A cells overexpressing CLOCK. Bioinformatic analysis of CPEB4-dependent genes undergoing changes in their poly(A) tail during epilepsy found that genes involved in the regulation of circadian rhythms are particularly enriched. Clock transcripts displayed a longer poly(A) tail length in the hippocampus of mice post-status epilepticus and during epilepsy. Moreover, CLOCK expression was increased in the hippocampus in mice post-status epilepticus and during epilepsy, and in resected hippocampus and cortex of patients with drug-resistant temporal lobe epilepsy. Furthermore, CPEB4 is required for CLOCK expression after status epilepticus, with lower levels in CPEB4-deficient compared to wild-type mice. Last, CPEB4-deficient mice showed altered circadian function, including altered melatonin blood levels and altered clustering of spontaneous seizures during the day. SIGNIFICANCE: Our results reveal a new positive transcriptional-translational feedback loop involving CPEB4 and CLOCK, which may contribute to the regulation of the sleep-wake cycle during epilepsy.


Assuntos
Proteínas CLOCK , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Melatonina , Proteínas de Ligação a RNA , Estado Epiléptico , Animais , Humanos , Masculino , Camundongos , Epilepsia do Lobo Temporal/metabolismo , Hipocampo , Melatonina/sangue , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Convulsões , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Fatores de Transcrição/metabolismo , Proteínas CLOCK/genética
15.
Cureus ; 15(6): e40398, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37456409

RESUMO

Endocrine disturbances such as diabetes insipidus (DI) and syndrome of inappropriate antidiuretic hormone secretion (SIADH) are recognized complications of craniopharyngioma surgery, which occur due to damage to structures that produce or store antidiuretic hormone (ADH). Intracranial hypotension is a clinical syndrome that presents with headache and typical radiological features and can occur due to a leak of cerebral spinal fluid (CSF) in operations that involve the opening of the arachnoid (e.g., craniopharyngioma surgery). We describe a patient presenting with headache, radiological evidence of intracranial hypotension, and chronic DI after craniopharyngioma surgery. This occurred in the absence of evidence of a CSF leak. The headache and radiological findings resolved after the identification and treatment of DI. Intracranial hypotension may have occurred secondary to dehydration in chronic DI. A 48-year-old woman presented with progressive visual field loss due to cystic recurrence of a craniopharyngioma. She underwent redo (second) extended endoscopic transsphenoidal surgery, having previously undergone an uncomplicated debulking procedure two years prior. Her redo operation was uneventful, and her vision improved postoperatively. A lumbar drain was placed preoperatively to protect the skull base repair and was removed after 48 hours. In the initial postoperative period, she developed a clinical (polyuria) and biochemical picture consistent with DI, subsequently reverting to a SIADH, after which fluid and sodium homeostasis appeared to normalize, and she was discharged. Two months after discharge, she re-presented with new headaches eased by lying flat. Magnetic resonance imaging (MRI) brain showed bilateral convexity subdural effusions and diffuse pachymeningeal enhancement, suggesting intracranial hypotension and raising concern for postoperative CSF leak. MRI spine did not show a CSF fistula at the site of the previous lumbar drain. Transsphenoidal examination under anesthesia showed a well-healed skull base repair and no evidence of CSF leak. She concurrently reported polyuria and polydipsia. A formal water deprivation test confirmed central DI. Treatment with desmopressin improved her headache, and a follow-up MRI brain showed resolution of the previous stigmata of intracranial hypotension. This case report reminds physicians and neurosurgeons that systemic disorders (such as dehydration) can cause intracranial hypotension.

16.
Proc Natl Acad Sci U S A ; 120(30): e2216658120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463203

RESUMO

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Canais de Sódio Disparados por Voltagem , Humanos , Camundongos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética
17.
Purinergic Signal ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453017

RESUMO

Activation of the ATP-gated P2X7 receptor (P2X7R), implicated in numerous diseases of the brain, can trigger diverse responses such as the release of pro-inflammatory cytokines, modulation of neurotransmission, cell proliferation or cell death. However, despite the known species-specific differences in its pharmacological properties, to date, most functional studies on P2X7R responses have been analyzed in cells from rodents or immortalised cell lines. To assess the endogenous and functional expression of P2X7Rs in human astrocytes, we differentiated human-induced pluripotent stem cells (hiPSCs) into GFAP and S100 ß-expressing astrocytes. Immunostaining revealed prominent punctate P2X7R staining. P2X7R protein expression was also confirmed by Western blot. Importantly, stimulation with the potent non-selective P2X7R agonist 2',3'-O-(benzoyl-4-benzoyl)-adenosine 5'- triphosphate (BzATP) or endogenous agonist ATP induced robust calcium rises in hiPSC-derived astrocytes which were blocked by the selective P2X7R antagonists AFC-5128 or JNJ-47965567. Our findings provide evidence for the functional expression of P2X7Rs in hiPSC-derived astrocytes and support their in vitro utility in investigating the role of the P2X7R and drug screening in disorders of the central nervous system (CNS).

18.
Postgrad Med J ; 99(1171): 484-491, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37294723

RESUMO

Medical students have an essential role in medical research, yet often lack opportunities for involvement within randomised trials. This study aimed to understand the educational impact of clinical trial recruitment for medical students. Tracking wound infection with smartphone technology (TWIST) was a randomised controlled trial that included adult patients undergoing emergency abdominal surgery across two university teaching hospitals. All recruiters underwent prerecruitment training based on 'Generating Student Recruiters for Randomised Trials' principles, and completed prerecruitment and postrecruitment surveys. Respondent agreement with statements were assessed using 5-point Likert scales (from 1 ('strongly disagree') to 5 ('strongly agree')). Quantitative data were analysed using paired t-tests to compare differences pre-involvement and post-involvement. Thematic content analysis was performed on free-text data to generate recommendations for future student research involvement. Of 492 patients recruited to TWIST between 26 July 2016 and 4 March 2020, 86.0% (n=423) were recruited by medical students. Following introduction of student co-investigators (n=31), the overall monthly recruitment rate tripled (4.8-15.7 patients). 96.8% of recruiters (n=30/31) completed both surveys, and all respondents reported significant improvement in clinical and academic competencies. Three higher-level thematic domains emerged from the qualitative analysis: (1) engagement, (2) preparation and (3) ongoing support. Student recruitment in clinical trials is feasible and accelerates recruitment to clinical trials. Students demonstrated novel clinical research competencies and increased their likelihood of future involvement. Adequate training, support and selection of suitable trials are essential for future student involvement in randomised trials.


Assuntos
Pesquisa Biomédica , Estudantes de Medicina , Adulto , Humanos , Inquéritos e Questionários , Competência Clínica , Hospitais Universitários
19.
Seizure ; 106: 68-75, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36774776

RESUMO

The release of the 2021 Intergovernmental Panel on Climate Change (IPCC) report makes clear that human activities have resulted in significant alterations in global climate. There is no doubt that climate change is upon us; chronic global warming has been punctuated by more frequent extreme weather events. Humanity will have to mitigate climate change and adapt to these changing conditions or face dire consequences. One under-appreciated aspect of this global crisis is its impact on healthcare, particularly people with epilepsy and temperature-sensitive seizures. As members of the inaugural International League Against Epilepsy (ILAE) Climate Change Commission, we recount the personal motivations that have led each team member to decide to take action, in the hope that our journeys as ordinary clinicians and scientists will help persuade others that they too can act to foster change within their spheres of influence.


Assuntos
Mudança Climática , Epilepsia , Humanos , Epilepsia/terapia , Convulsões
20.
Br J Pharmacol ; 180(13): 1710-1729, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36637008

RESUMO

BACKGROUND AND PURPOSE: Neonatal seizures represent a clinical emergency. However, current anti-seizure medications fail to resolve seizures in ~50% of infants. The P2X7 receptor (P2X7R) is an important driver of inflammation, and evidence suggests that P2X7R contributes to seizures and epilepsy in adults. However, no genetic proof has yet been provided to determine what contribution P2X7R makes to neonatal seizures, its effects on inflammatory signalling during neonatal seizures, and the therapeutic potential of P2X7R-based treatments on long-lasting brain excitability. EXPERIMENTAL APPROACH: Neonatal seizures were induced by global hypoxia in 7-day-old mouse pups (P7). The role of P2X7Rs during seizures was analysed in P2X7R-overexpressing and knockout mice. Treatment of wild-type mice after hypoxia with the P2X7R antagonist JNJ-47965567 was used to determine the effects of the P2X7R on long-lasting brain hyperexcitability. Cell type-specific P2X7R expression was analysed in P2X7R-EGFP reporter mice. RNA sequencing was used to monitor P2X7R-dependent hippocampal downstream signalling. KEY RESULTS: P2X7R deletion reduced seizure severity, whereas P2X7R overexpression exacerbated seizure severity and reduced responsiveness to anti-seizure medication. P2X7R deficiency led to an anti-inflammatory phenotype in microglia, and treatment of mice with a P2X7R antagonist reduced long-lasting brain hyperexcitability. RNA sequencing identified several pathways altered in P2X7R knockout mice after neonatal hypoxia, including a down-regulation of genes implicated in inflammation and glutamatergic signalling. CONCLUSION AND IMPLICATIONS: Treatments based on targeting the P2X7R may represent a novel therapeutic strategy for neonatal seizures with P2X7Rs contributing to the generation of neonatal seizures, driving inflammatory processes and long-term hyperexcitability states.


Assuntos
Receptores Purinérgicos P2X7 , Convulsões , Animais , Camundongos , Animais Recém-Nascidos , Encéfalo/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Hipóxia/complicações , Inflamação/tratamento farmacológico , Camundongos Knockout , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Convulsões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA