Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 531, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36754957

RESUMO

System scalability is fundamental for large-scale quantum computers (QCs) and is being pursued over a variety of hardware platforms. For QCs based on trapped ions, architectures such as the quantum charge-coupled device (QCCD) are used to scale the number of qubits on a single device. However, the number of ions that can be hosted on a single quantum computing module is limited by the size of the chip being used. Therefore, a modular approach is of critical importance and requires quantum connections between individual modules. Here, we present the demonstration of a quantum matter-link in which ion qubits are transferred between adjacent QC modules. Ion transport between adjacent modules is realised at a rate of 2424 s-1 and with an infidelity associated with ion loss during transport below 7 × 10-8. Furthermore, we show that the link does not measurably impact the phase coherence of the qubit. The quantum matter-link constitutes a practical mechanism for the interconnection of QCCD devices. Our work will facilitate the implementation of modular QCs capable of fault-tolerant utility-scale quantum computation.

2.
Phys Rev Lett ; 121(18): 180501, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444422

RESUMO

Constructing a large-scale ion trap quantum processor will require entangling gate operations that are robust in the presence of noise and experimental imperfection. We experimentally demonstrate how a new type of Mølmer-Sørensen gate protects against infidelity caused by heating of the motional mode used during the gate. Furthermore, we show how the same technique simultaneously provides significant protection against slow fluctuations and mis-sets in the secular frequency. Since this parameter sensitivity is worsened in cases where the ions are not ground-state cooled, our method provides a path towards relaxing ion cooling requirements in practical realizations of quantum computing and simulation.

3.
Phys Rev Lett ; 117(22): 220501, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925715

RESUMO

Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

4.
Quantum Inf Process ; 15(12): 5385-5414, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28408863

RESUMO

We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi:10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

5.
Phys Rev Lett ; 115(1): 013002, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26182094

RESUMO

We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n[over ¯]=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n=0⟩ and |n=1⟩ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

6.
Nat Commun ; 5: 3637, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24704758

RESUMO

Microfabricated ion traps are a major advancement towards scalable quantum computing with trapped ions. The development of more versatile ion-trap designs, in which tailored arrays of ions are positioned in two dimensions above a microfabricated surface, will lead to applications in fields as varied as quantum simulation, metrology and atom-ion interactions. Current surface ion traps often have low trap depths and high heating rates, because of the size of the voltages that can be applied to them, limiting the fidelity of quantum gates. Here we report on a fabrication process that allows for the application of very high voltages to microfabricated devices in general and use this advance to fabricate a two-dimensional ion-trap lattice on a microchip. Our microfabricated architecture allows for reliable trapping of two-dimensional ion lattices, long ion lifetimes, rudimentary shuttling between lattice sites and the ability to deterministically introduce defects into the ion lattice.

7.
Phys Rev Lett ; 111(14): 140501, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138229

RESUMO

Many schemes for implementing quantum information processing require that the atomic states used have a nonzero magnetic moment; however, such magnetically sensitive states of an atom are vulnerable to decoherence due to fluctuating magnetic fields. Dressing an atom with external fields is a powerful method of reducing such decoherence [N. Timoney et al., Nature (London) 476, 185 (2011)]. We introduce an experimentally simpler method of manipulating such a dressed-state qubit, which allows the implementation of general rotations of the qubit, and demonstrate this method using a trapped ytterbium ion.

8.
Phys Rev Lett ; 97(10): 103007, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-17025815

RESUMO

We measure and characterize anomalous motional heating of an atomic ion confined in the lowest quantum levels of a novel rf ion trap that features moveable electrodes. The scaling of heating with electrode proximity is measured, and when the electrodes are cooled from 300 to 150 K, the heating rate is suppressed by an order of magnitude. This provides direct evidence that anomalous motional heating of trapped ions stems from microscopic noisy potentials on the electrodes that are thermally driven. These observations are relevant to decoherence in quantum information processing schemes based on trapped ions and perhaps other charge-based quantum systems.

9.
Nature ; 412(6842): 52-5, 2001 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-11452301

RESUMO

The divergence of quantum and classical descriptions of particle motion is clearly apparent in quantum tunnelling between two regions of classically stable motion. An archetype of such non-classical motion is tunnelling through an energy barrier. In the 1980s, a new process, 'dynamical' tunnelling, was predicted, involving no potential energy barrier; however, a constant of the motion (other than energy) still forbids classically the quantum-allowed motion. This process should occur, for example, in periodically driven, nonlinear hamiltonian systems with one degree of freedom. Such systems may be chaotic, consisting of regions in phase space of stable, regular motion embedded in a sea of chaos. Previous studies predicted dynamical tunnelling between these stable regions. Here we observe dynamical tunnelling of ultracold atoms from a Bose-Einstein condensate in an amplitude-modulated optical standing wave. Atoms coherently tunnel back and forth between their initial state of oscillatory motion (corresponding to an island of regular motion) and the state oscillating 180 degrees out of phase with the initial state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA