Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 43(12): 1337-1346, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35543378

RESUMO

Adipocytes are energy stores of the body which also play a role in physiological regulation and homeostasis through their endocrine activity. Adipocyte circadian clocks drive rhythms in gene expression, and dysregulation of these circadian rhythms associates with pathological conditions such as diabetes. However, although the role of circadian rhythms in adipose cells and related tissues has been studied from phsyiological and molecular perspectives, they have not yet been explored from an electrical perspective. Research into electro-chronobiology has revealed that electrical properties have important roles in peripheral clock regulation independently of transcription-translation feedback loops. We have used dielectrophoresis to study electrophysiological rhythms in pre-adipocytes - representing an adipocyte precursor and nucleated cell-based model, using serum shocking as the cellular method of clock entrainment. The results revealed significant electrophysiological rhythms, culminating in circadian (ca. 24 hourly) cycles in effective membrane capacitance and radius properties, whereas effective membrane conductance was observed to express ultradian (ca. 14 hourly) rhythms. These data shed new light into pre-adipocyte electrical behaviour and present a potential target for understanding and manipulation of metabolic physiology.


Assuntos
Relógios Circadianos , Adipócitos/metabolismo , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Camundongos
2.
Sci Rep ; 11(1): 19446, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593849

RESUMO

Even in nonexcitable cells, the membrane potential Vm is fundamental to cell function, with roles from ion channel regulation, development, to cancer metastasis. Vm arises from transmembrane ion concentration gradients; standard models assume homogeneous extracellular and intracellular ion concentrations, and that Vm only exists across the cell membrane and has no significance beyond it. Using red blood cells, we show that this is incorrect, or at least incomplete; Vm is detectable beyond the cell surface, and modulating Vm produces quantifiable and consistent changes in extracellular potential. Evidence strongly suggests this is due to capacitive coupling between Vm and the electrical double layer, rather than molecular transporters. We show that modulating Vm changes the extracellular ion composition, mimicking the behaviour if voltage-gated ion channels in non-excitable channels. We also observed Vm-synchronised circadian rhythms in extracellular potential, with significant implications for cell-cell interactions and cardiovascular disease.


Assuntos
Eritrócitos/fisiologia , Potenciais da Membrana/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ritmo Circadiano , Fenômenos Eletrofisiológicos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , Neuraminidase/farmacologia , Valinomicina/farmacologia
3.
J Cell Physiol ; 236(11): 7421-7439, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008188

RESUMO

Chondrogenic progenitor cells (CPCs) may be used as an alternative source of cells with potentially superior chondrogenic potential compared to mesenchymal stem cells (MSCs), and could be exploited for future regenerative therapies targeting articular cartilage in degenerative diseases such as osteoarthritis (OA). In this study, we hypothesised that CPCs derived from OA cartilage may be characterised by a distinct channelome. First, a global transcriptomic analysis using Affymetrix microarrays was performed. We studied the profiles of those ion channels and transporter families that may be relevant to chondroprogenitor cell physiology. Following validation of the microarray data with quantitative reverse transcription-polymerase chain reaction, we examined the role of calcium-dependent potassium channels in CPCs and observed functional large-conductance calcium-activated potassium (BK) channels involved in the maintenance of the chondroprogenitor phenotype. In line with our very recent results, we found that the KCNMA1 gene was upregulated in CPCs and observed currents that could be attributed to the BK channel. The BK channel inhibitor paxilline significantly inhibited proliferation, increased the expression of the osteogenic transcription factor RUNX2, enhanced the migration parameters, and completely abolished spontaneous Ca2+ events in CPCs. Through characterisation of their channelome we demonstrate that CPCs are a distinct cell population but are highly similar to MSCs in many respects. This study adds key mechanistic data to the in-depth characterisation of CPCs and their phenotype in the context of cartilage regeneration.


Assuntos
Cartilagem Articular/metabolismo , Movimento Celular , Condrócitos/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Osteoartrite do Joelho/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Sinalização do Cálcio , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica , Humanos , Canais Iônicos/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana , Proteínas de Membrana Transportadoras/genética , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Bloqueadores dos Canais de Potássio/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Fatores de Tempo
4.
Sci Rep ; 10(1): 14603, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884022

RESUMO

It is known that cells grown in 3D are more tolerant to drug treatment than those grown in dispersion, but the mechanism for this is still not clear; cells grown in 3D have opportunities to develop inter-cell communication, but are also closely packed which may impede diffusion. In this study we examine methods for dielectrophoresis-based cell aggregation of both suspension and adherent cell lines, and compare the effect of various drugs on cells grown in 3D and 2D. Comparing viability of pharmacological interventions on 3D cell clusters against both suspension cells and adherent cells grown in monolayer, as well as against a unicellular organism with no propensity for intracellular communication, we suggest that 3D aggregates of adherent cells, compared to suspension cells, show a substantially different drug response to cells grown in monolayer, which increases as the IC50 is approached. Further, a mathematical model of the system for each agent demonstrates that changes to drug response are due to inherent changes in the system of adherent cells from the 2D to 3D state. Finally, differences in the electrophysiological membrane properties of the adherent cell type suggest this parameter plays an important role in the differences found in the 3D drug response.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Neoplasias/patologia , Vincristina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Comunicação Celular , Proliferação de Células , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Células K562 , Neoplasias/tratamento farmacológico
5.
Electrophoresis ; 41(21-22): 1915-1930, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32735707

RESUMO

Many cellular functions are affected by and thus can be characterized by a cell's electrophysiology. This has also been found to correspond to other biophysical parameters such as cell morphology and mechanical properties. Dielectrophoresis (DEP) is an electrostatic technique which can be used to examine cellular biophysical parameters through the measuring of single or multiple cell response to electric field induced forces. This label-free method offers many advantages in characterizing a cell population over conventional electrophysiology methods such as patch clamping; however, it has yet to see mainstream pharmacological application. Challenges such as the transdisciplinary nature of the field bridging engineering and the biological sciences, throughput, specificity as well as standardization are being addressed in current literature. This review focuses on the developments of DEP-based cell electrophysiological characterization where determining cellular properties such as membrane conductance and capacitance, and cytoplasmic conductivity are the primary motivation. A brief theoretical review, techniques for obtaining these cell parameters, as well as the resulting cell parameters and their applications are included in this review. This review aims to further support the development of DEP-based cell characterization as an important part of the future of DEP and electrophysiology research.


Assuntos
Separação Celular , Eletroforese , Animais , Separação Celular/instrumentação , Separação Celular/métodos , Células Cultivadas , Condutividade Elétrica , Eletroforese/instrumentação , Eletroforese/métodos , Desenho de Equipamento , Humanos , Camundongos , Rotação
6.
Sci Rep ; 9(1): 19153, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844107

RESUMO

Electrical correlates of the physiological state of a cell, such as membrane conductance and capacitance, as well as cytoplasm conductivity, contain vital information about cellular function, ion transport across the membrane, and propagation of electrical signals. They are, however, difficult to measure; gold-standard techniques are typically unable to measure more than a few cells per day, making widespread adoption difficult and limiting statistical reproducibility. We have developed a dielectrophoretic platform using a disposable 3D electrode geometry that accurately (r2 > 0.99) measures mean electrical properties of populations of ~20,000 cells, by taking parallel ensemble measurements of cells at 20 frequencies up to 45 MHz, in (typically) ten seconds. This allows acquisition of ultra-high-resolution (100-point) DEP spectra in under two minutes. Data acquired from a wide range of cells - from platelets to large cardiac cells - benchmark well with patch-clamp-data. These advantages are collectively demonstrated in a longitudinal (same-animal) study of rapidly-changing phenomena such as ultradian (2-3 hour) rhythmicity in whole blood samples of the common vole (Microtus arvalis), taken from 10 µl tail-nick blood samples and avoiding sacrifice of the animal that is typically required in these studies.


Assuntos
Células/metabolismo , Eletroforese/métodos , Fenômenos Eletrofisiológicos , Animais , Arvicolinae , Plaquetas/fisiologia , Membrana Celular/fisiologia , Condutividade Elétrica , Eletrodos , Eritrócitos/fisiologia , Humanos , Células Jurkat , Células K562 , Camundongos , Concentração Osmolar , Fatores de Tempo , Ritmo Ultradiano/fisiologia
7.
J Biol Rhythms ; 34(2): 144-153, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898060

RESUMO

Temperature compensation and period determination by casein kinase 1 (CK1) are conserved features of eukaryotic circadian rhythms, whereas the clock gene transcription factors that facilitate daily gene expression rhythms differ between phylogenetic kingdoms. Human red blood cells (RBCs) exhibit temperature-compensated circadian rhythms, which, because RBCs lack nuclei, must occur in the absence of a circadian transcription-translation feedback loop. We tested whether period determination and temperature compensation are dependent on CKs in RBCs. As with nucleated cell types, broad-spectrum kinase inhibition with staurosporine lengthened the period of the RBC clock at 37°C, with more specific inhibition of CK1 and CK2 also eliciting robust changes in circadian period. Strikingly, inhibition of CK1 abolished temperature compensation and increased the Q10 for the period of oscillation in RBCs, similar to observations in nucleated cells. This indicates that CK1 activity is essential for circadian rhythms irrespective of the presence or absence of clock gene expression cycles.


Assuntos
Caseína Quinase Ialfa/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano , Eritrócitos/metabolismo , Eritrócitos/fisiologia , Temperatura , Caseína Quinase Ialfa/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Estaurosporina/farmacologia
8.
Nat Commun ; 8(1): 1978, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215003

RESUMO

Circadian rhythms organize many aspects of cell biology and physiology to a daily temporal program that depends on clock gene expression cycles in most mammalian cell types. However, circadian rhythms are also observed in isolated mammalian red blood cells (RBCs), which lack nuclei, suggesting the existence of post-translational cellular clock mechanisms in these cells. Here we show using electrophysiological and pharmacological approaches that human RBCs display circadian regulation of membrane conductance and cytoplasmic conductivity that depends on the cycling of cytoplasmic K+ levels. Using pharmacological intervention and ion replacement, we show that inhibition of K+ transport abolishes RBC electrophysiological rhythms. Our results suggest that in the absence of conventional transcription cycles, RBCs maintain a circadian rhythm in membrane electrophysiology through dynamic regulation of K+ transport.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Eritrócitos/metabolismo , Potássio/metabolismo , Fenômenos Eletrofisiológicos , Humanos , Peroxirredoxinas/metabolismo , RNA Mensageiro/análise , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 114(18): 4591-4596, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28408395

RESUMO

Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.


Assuntos
Separação Celular/métodos , Eletroforese/métodos , Fenômenos Eletrofisiológicos , Eritrócitos/citologia , Neoplasias/patologia , Saccharomyces cerevisiae/citologia , Linhagem Celular Tumoral , Separação Celular/economia , Eletroforese/economia , Humanos
10.
Analyst ; 141(23): 6408-6415, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27774532

RESUMO

A loss of ability of cells to undergo apoptosis (programmed cell death, whereby the cell ceases to function and destroys itself) is commonly associated with cancer, and many anti-cancer interventions aim to restart the process. Consequently, the accurate quantification of apoptosis is essential in understanding the function and performance of new anti-cancer drugs. Dielectrophoresis has previously been demonstrated to detect apoptosis more rapidly than other methods, and is low-cost, label-free and rapid, but has previously been unable to accurately quantify cells through the apoptotic process because cells in late apoptosis disintegrate, making cell tracking impossible. In this paper we use a novel method based on light absorbance and multi-population tracking to quantify the progress of apoptosis, benchmarking against conventional assays including MTT, trypan blue and Annexin-V. Analyses are performed on suspension and adherent cells, and using two apoptosis-inducing agents. IC50 measurements compared favourably to MTT and were superior to trypan blue, whilst also detecting apoptotic progression faster than Annexin-V.


Assuntos
Apoptose , Doxorrubicina/farmacologia , Eletroforese/métodos , Células HeLa , Humanos , Células Jurkat
11.
Electrophoresis ; 32(22): 3164-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102497

RESUMO

The use of non-invasive methods to detect and enrich circulating tumor cells (CTCs) independent of their genotype is critical for early diagnostic and treatment purposes. The key to using CTCs as predictive clinical biomarkers is their separation and enrichment. This work presents the use of a contactless dielectrophoresis (cDEP) device to investigate the frequency response of cells and calculate their area-specific membrane capacitance. This is the first demonstration of a cDEP device which is capable of operating between 10 and 100 kHz. Positive and negative dielectrophoretic responses were observed in red blood cells, macrophages, breast cancer, and leukemia cells. The area-specific membrane capacitances of MDA-MB231, THP-1 and PC1 cells were determined to be 0.01518 ± 0.0013, 0.01719 ± 0.0020, 0.01275 ± 0.0018 (F/m(2)), respectively. By first establishing the dielectrophoretic responses of cancerous cells within this cDEP device, conditions to detect and enrich tumor cells from mixtures with non-transformed cells can be determined providing further information to develop methods to isolate these rare cells.


Assuntos
Separação Celular/instrumentação , Eletroforese/instrumentação , Células Neoplásicas Circulantes/química , Análise Espectral/instrumentação , Linhagem Celular Tumoral , Separação Celular/métodos , Simulação por Computador , Humanos
12.
Electrophoresis ; 32(18): 2523-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21922494

RESUMO

This work is the first to demonstrate the ability of contactless dielectrophoresis (cDEP) to isolate target cell species from a heterogeneous sample of live cells. Since all cell types have a unique molecular composition, it is expected that their dielectrophoretic (DEP) properties are also unique. cDEP is a technique developed to improve upon traditional and insulator-based DEP devices by replacing embedded metal electrodes with fluid electrode channels positioned alongside desired trapping locations. Through the placement of the fluid electrode channels and the removal of contact between the electrodes and the sample fluid, cDEP mitigates issues associated with sample/electrode contact. MCF10A, MCF7, and MDA-MB-231 human breast cells were used to represent early, intermediate, and late-staged breast cancer, respectively. Trapping frequency responses of each cell type were distinct, with the largest difference between the cells found at 20 and 30 V. MDA-MB-231 cells were successfully isolated from a population containing MCF10A and MCF7 cells at 30 V and 164 kHz. The ability to selectively concentrate cells is the key to development of biological applications using DEP. The isolation of these cells could provide a workbench for clinicians to detect transformed cells at their earliest stage, screen drug therapies prior to patient treatment, increasing the probability of success, and eliminate unsuccessful treatment options.


Assuntos
Separação Celular/métodos , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/métodos , Neoplasias/patologia , Linhagem Celular Tumoral , Separação Celular/instrumentação , Eletrodos , Eletroforese/instrumentação , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias/química
13.
J Biomech ; 44(9): 1729-34, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21497355

RESUMO

In voice research, in vitro tensile stretch experiments of vocal fold tissues are commonly employed to determine the tissue biomechanical properties. In the standard stretch-release protocol, tissue deformation is computed from displacements applied to sutures inserted through the thyroid and arytenoid cartilages, with the cartilages assumed to be rigid. Here, a non-contact optical method was employed to determine the actual tissue deformation of vocal fold lamina propria specimens from three excised human larynges in uniaxial tensile tests. Specimen deformation was found to consist not only of deformation of the tissue itself, but also deformation of the cartilages, as well as suture alignment and tightening. Stress-stretch curves of a representative load cycle were characterized by an incompressible Ogden model. The initial longitudinal elastic modulus was found to be considerably higher if determined based on optical displacement measurements than typical values reported in the literature. The present findings could change the understanding of the mechanics underlying vocal fold vibration. Given the high longitudinal elastic modulus the lamina propria appeared to demonstrate a substantial level of anisotropy. Consequently, transverse shear could play a significant role in vocal fold vibration, and fundamental frequencies of phonation should be predicted by beam theories accounting for such effects.


Assuntos
Cartilagem/fisiologia , Fonação , Prega Vocal/fisiologia , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Fenômenos Biomecânicos , Elasticidade , Desenho de Equipamento , Humanos , Masculino , Teste de Materiais , Mucosa/fisiologia , Óptica e Fotônica , Resistência à Tração
14.
Lab Chip ; 10(4): 438-45, 2010 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-20126683

RESUMO

Contactless dielectrophoresis (cDEP) is a recently developed method of cell manipulation in which the electrodes are physically isolated from the sample. Here we present two microfluidic devices capable of selectively isolating live human leukemia cells from dead cells utilizing their electrical signatures. The effect of different voltages and frequencies on the gradient of the electric field and device performance was investigated numerically and validated experimentally. With these prototype devices we were able to achieve greater than 95% removal efficiency at 0.2-0.5 mm s(-1) with 100% selectivity between live and dead cells. In conjunction with enrichment, cDEP could be integrated with other technologies to yield fully automated lab-on-a-chip systems capable of sensing, sorting, and identifying rare cells.


Assuntos
Separação Celular/métodos , Animais , Morte Celular , Linhagem Celular Tumoral , Separação Celular/instrumentação , Sobrevivência Celular , Condutividade Elétrica , Eletroforese , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA