Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(12): 113528, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041817

RESUMO

Apolipoproteins L1 and L3 (APOLs) are associated at the Golgi with the membrane fission factors phosphatidylinositol 4-kinase-IIIB (PI4KB) and non-muscular myosin 2A. Either APOL1 C-terminal truncation (APOL1Δ) or APOL3 deletion (APOL3-KO [knockout]) reduces PI4KB activity and triggers actomyosin reorganization. We report that APOL3, but not APOL1, controls PI4KB activity through interaction with PI4KB and neuronal calcium sensor-1 or calneuron-1. Both APOLs are present in Golgi-derived autophagy-related protein 9A vesicles, which are involved in PI4KB trafficking. Like APOL3-KO, APOL1Δ induces PI4KB dissociation from APOL3, linked to reduction of mitophagy flux and production of mitochondrial reactive oxygen species. APOL1 and APOL3, respectively, can interact with the mitophagy receptor prohibitin-2 and the mitophagosome membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). While APOL1 conditions PI4KB and APOL3 involvement in mitochondrion fission and mitophagy, APOL3-VAMP8 interaction promotes fusion between mitophagosomal and endolysosomal membranes. We propose that APOL3 controls mitochondrial membrane dynamics through interactions with the fission factor PI4KB and the fusion factor VAMP8.


Assuntos
Apolipoproteína L1 , Membranas Mitocondriais , Apolipoproteína L1/genética , Membranas Mitocondriais/metabolismo , Complexo de Golgi/metabolismo , Mitocôndrias , 1-Fosfatidilinositol 4-Quinase/metabolismo , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Dinâmica Mitocondrial
2.
Cell Rep ; 42(1): 111921, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640319

RESUMO

Tail-anchored (TA) proteins contain a single C-terminal transmembrane domain (TMD) that is captured by the cytosolic Get3 in yeast (TRC40 in humans). Get3 delivers TA proteins to the Get1/2 complex for insertion into the endoplasmic reticulum (ER) membrane. How Get1/2 mediates insertion of TMDs of TA proteins into the membrane is poorly understood. Using bulk fluorescence and microfluidics assays, we show that Get1/2 forms an aqueous channel in reconstituted bilayers. We estimate the channel diameter to be ∼2.5 nm wide, corresponding to the circumference of two Get1/2 complexes. We find that the Get3 binding can seal the Get1/2 channel, which dynamically opens and closes. Our mutation analysis further shows that the Get1/2 channel activity is required to release TA proteins from Get3 for insertion into the membrane. Hence, we propose that the Get1/2 channel functions as an insertase for insertion of TMDs and as a translocase for translocation of C-terminal hydrophilic segments.


Assuntos
Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transporte Proteico
3.
FEBS Open Bio ; 12(11): 1958-1979, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35622519

RESUMO

Membrane fusion is not a spontaneous process. Physiologically, the formation of coiled-coil protein complexes, the SNAREpins, bridges the membrane of a vesicle and a target membrane, brings them in close contact, and provides the energy necessary for their fusion. In this review, we utilize results from in vitro experiments and simple physics and chemistry models to dissect the kinetics and energetics of the fusion process from the encounter of the two membranes to the full expansion of a fusion pore. We find three main energy barriers that oppose the fusion process: SNAREpin initiation, fusion pore opening, and expansion. SNAREpin initiation is inherent to the proteins and makes in vitro fusion kinetic experiments rather slow. The kinetics are physiologically accelerated by effectors. The energy barriers that precede pore opening and pore expansion can be overcome by several SNAREpins acting in concert.


Assuntos
Fusão de Membrana , Proteínas SNARE , Fusão de Membrana/fisiologia , Cinética , Modelos Biológicos
4.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495324

RESUMO

Vesicle fusion with a target membrane is a key event in cellular trafficking and ensures cargo transport within the cell and between cells. The formation of a protein complex, called SNAREpin, provides the energy necessary for the fusion process. In a three-dimensional microfluidic chip, we monitored the fusion of small vesicles with a suspended asymmetric lipid bilayer. Adding ion channels into the vesicles, our setup allows the observation of a single fusion event by electrophysiology with 10-µs precision. Intriguingly, we identified that small transient fusion pores of discrete sizes reversibly opened with a characteristic lifetime of ∼350 ms. The distribution of their apparent diameters displayed two peaks, at 0.4 ± 0.1 nm and 0.8 ± 0.2 nm. Varying the number of SNAREpins, we demonstrated that the first peak corresponds to fusion pores induced by a single SNAREpin and the second peak is associated with pores involving two SNAREpins acting simultaneously. The pore size fluctuations provide a direct estimate of the energy landscape of the pore. By extrapolation, the energy landscape for three SNAREpins does not exhibit any thermally significant energy barrier, showing that pores larger than 1.5 nm are spontaneously produced by three or more SNAREpins acting simultaneously, and expand indefinitely. Our results quantitatively explain why one SNAREpin is sufficient to open a fusion pore and more than three SNAREpins are required for cargo release. Finally, they also explain why a machinery that synchronizes three SNAREpins, or more, is mandatory to ensure fast neurotransmitter release during synaptic transmission.


Assuntos
Fusão de Membrana , Proteínas SNARE/metabolismo , Metabolismo Energético
5.
Commun Biol ; 3(1): 148, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235856

RESUMO

Synucleinopathies are neurological diseases that are characterized by the accumulation of aggregates of a cytosolic protein, α-synuclein, at the plasma membrane. Even though the pathological role of the protein is established, the mechanism by which it damages neurons remains unclear due to the difficulty to correctly mimic the plasma membrane in vitro. Using a microfluidic setup in which the composition of the plasma membrane, including the asymmetry of the two leaflets, is recapitulated, we demonstrate a triple action of α-synuclein on the membrane. First, it changes membrane topology by inducing pores of discrete sizes, likely nucleated from membrane-bound proteins and subsequently enlarged by proteins in solution. Second, protein binding to the cytosolic leaflet increases the membrane capacitance by thinning it and/or changing its relative permittivity. Third, α-synuclein insertion inside the membrane hydrophobic core immobilizes the lipids in both leaflets, including the opposing protein-free extracellular one.


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Membranas Artificiais , alfa-Sinucleína/metabolismo , Membrana Celular/patologia , Capacitância Elétrica , Recuperação de Fluorescência Após Fotodegradação , Interações Hidrofóbicas e Hidrofílicas , Dispositivos Lab-On-A-Chip , Fluidez de Membrana , Lipídeos de Membrana/química , Potenciais da Membrana , Técnicas Analíticas Microfluídicas/instrumentação , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , alfa-Sinucleína/química
6.
Small ; 15(21): e1900725, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977975

RESUMO

Experimental setups to produce and to monitor model membranes have been successfully used for decades and brought invaluable insights into many areas of biology. However, they all have limitations that prevent the full in vitro mimicking and monitoring of most biological processes. Here, a suspended physiological bilayer-forming chip is designed from 3D-printing techniques. This chip can be simultaneously integrated to a confocal microscope and a path-clamp amplifier. It is composed of poly(dimethylsiloxane) and consists of a ≈100 µm hole, where the horizontal planar bilayer is formed, connecting two open crossed-channels, which allows for altering of each lipid monolayer separately. The bilayer, formed by the zipping of two lipid leaflets, is free-standing, horizontal, stable, fluid, solvent-free, and flat with the 14 types of physiologically relevant lipids, and the bilayer formation process is highly reproducible. Because of the two channels, asymmetric bilayers can be formed by making the two lipid leaflets of different composition. Furthermore, proteins, such as transmembrane, peripheral, and pore-forming proteins, can be added to the bilayer in controlled orientation and keep their native mobility and activity. These features allow in vitro recapitulation of membrane process close to physiological conditions.


Assuntos
Microfluídica/métodos , Impressão Tridimensional , Dimetilpolisiloxanos/química , Recuperação de Fluorescência Após Fotodegradação , Bicamadas Lipídicas/química
7.
Nat Commun ; 10(1): 185, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643128

RESUMO

Membrane-disrupting agents that selectively target virus versus host membranes could potentially inhibit a broad-spectrum of enveloped viruses, but currently such antivirals are lacking. Here, we develop a nanodisc incorporated with a decoy virus receptor that inhibits virus infection. Mechanistically, nanodiscs carrying the viral receptor sialic acid bind to influenza virions and are co-endocytosed into host cells. At low pH in the endosome, the nanodiscs rupture the viral envelope, trapping viral RNAs inside the endolysosome for enzymatic decomposition. In contrast, liposomes containing a decoy receptor show weak antiviral activity due to the lack of membrane disruption. The nanodiscs inhibit influenza virus infection and reduce morbidity and mortality in a mouse model. Our results suggest a new class of antivirals applicable to other enveloped viruses that cause irreversible physical damage specifically to virus envelope by viruses' own fusion machine. In conclusion, the lipid nanostructure provides another dimension for antiviral activity of decoy molecules.


Assuntos
Antivirais/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , RNA Viral/metabolismo , Células A549 , Animais , Antivirais/química , Antivirais/uso terapêutico , Bioengenharia/métodos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Cães , Endossomos/metabolismo , Feminino , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/mortalidade , Influenza Humana/virologia , Bicamadas Lipídicas/química , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Oseltamivir/uso terapêutico , Receptores de Superfície Celular/química , Proteínas Virais/química , Vírion/efeitos dos fármacos , Vírion/metabolismo , Internalização do Vírus/efeitos dos fármacos
8.
Biochem Biophys Res Commun ; 488(1): 53-59, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28476622

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion by forming a ternary SNARE complex. A minimalist approach utilizing proteoliposomes with reconstituted SNARE proteins yielded a wealth of information pinpointing the molecular mechanism of SNARE-mediated fusion and its regulation by accessory proteins. Two important attributes of a membrane fusion are lipid-mixing and the formation of an aqueous passage between apposing membranes. These two attributes are typically observed by using various fluorescent dyes. Currently available in vitro assay systems for observing fusion pore opening have several weaknesses such as cargo-bleeding, incomplete removal of unencapsulated dyes, and inadequate information regarding the size of the fusion pore, limiting measurements of the final stage of membrane fusion. In the present study, we used a biotinylated green fluorescence protein and streptavidin conjugated with Dylight 594 (DyStrp) as a Föster resonance energy transfer (FRET) donor and acceptor, respectively. This FRET pair encapsulated in each v-vesicle containing synaptobrevin and t-vesicle containing a binary acceptor complex of syntaxin 1a and synaptosomal-associated protein 25 revealed the opening of a large fusion pore of more than 5 nm, without the unwanted signals from unencapsulated dyes or leakage. This system enabled determination of the stoichiometry of the merging vesicles because the FRET efficiency of the FRET pair depended on the molar ratio between dyes. Here, we report a robust and informative assay for SNARE-mediated fusion pore opening.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteínas SNARE/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Fusão de Membrana , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo
9.
Front Mol Neurosci ; 10: 93, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28408867

RESUMO

Neurotransmitters are released within a millisecond after Ca2+ arrives at an active zone. However, the vesicle fusion pathway underlying this synchronous release is yet to be understood. At the center of controversy is whether hemifusion, in which outer leaflets are merged while inner leaflets are still separated, is an on-pathway or off-pathway product of Ca2+-triggered exocytosis. Using the single vesicle fusion assay, we recently demonstrated that hemifusion is an on-pathway intermediate that immediately proceeds to full fusion upon Ca2+ triggering. It has been shown that the flavonoid myricetin arrests soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated vesicle fusion at hemifusion, but that the hemifused vesicles spontaneously convert to full fusion when the myricetin clamp is removed by the enzyme laccase. In the present study, we visualized SNARE-mediated hemifusion between two SNARE-reconstituted giant unilamellar vesicles (GUVs) arrested by myricetin. The large size of the GUVs enabled us to directly image the hemifusion between them. When two merging GUVs were labeled with different fluorescent dyes, GUV pairs showed asymmetric fluorescence intensities depending on the position on the GUV pair consistent with what is expected for hemifusion. The flow of lipids from one vesicle to the other was revealed with fluorescence recovery after photobleaching (FRAP), indicating that the two membranes had hemifused. These results support the hypothesis that hemifusion may be the molecular status that primes Ca2+-triggered millisecond exocytosis. This study represents the first imaging of SNARE-driven hemifusion between GUVs.

10.
J Am Chem Soc ; 138(13): 4512-21, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26987363

RESUMO

Membrane fusion is mediated by the SNARE complex which is formed through a zippering process. Here, we developed a chemical controller for the progress of membrane fusion. A hemifusion state was arrested by a polyphenol myricetin which binds to the SNARE complex. The arrest of membrane fusion was rescued by an enzyme laccase that removes myricetin from the SNARE complex. The rescued hemifusion state was metastable and long-lived with a decay constant of 39 min. This membrane fusion controller was applied to delineate how Ca(2+) stimulates fusion-pore formation in a millisecond time scale. We found, using a single-vesicle fusion assay, that such myricetin-primed vesicles with synaptotagmin 1 respond synchronously to physiological concentrations of Ca(2+). When 10 µM Ca(2+) was added to the hemifused vesicles, the majority of vesicles rapidly advanced to fusion pores with a time constant of 16.2 ms. Thus, the results demonstrate that a minimal exocytotic membrane fusion machinery composed of SNAREs and synaptotagmin 1 is capable of driving membrane fusion in a millisecond time scale when a proper vesicle priming is established. The chemical controller of SNARE-driven membrane fusion should serve as a versatile tool for investigating the differential roles of various synaptic proteins in discrete fusion steps.


Assuntos
Cálcio/metabolismo , Proteínas SNARE/metabolismo , Animais , Exocitose , Flavonoides/metabolismo , Lacase/metabolismo , Fusão de Membrana , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Ratos , Sinaptotagmina I/metabolismo
11.
Antimicrob Agents Chemother ; 60(4): 2232-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810657

RESUMO

Bacterial persisters are a small fraction of quiescent cells that survive in the presence of lethal concentrations of antibiotics. They can regrow to give rise to a new population that has the same vulnerability to the antibiotics as did the parental population. Although formation of bacterial persisters in the presence of various antibiotics has been documented, the molecular mechanisms by which these persisters tolerate the antibiotics are still controversial. We found that amplification of the fumarate reductase operon (FRD) inEscherichia coliled to a higher frequency of persister formation. The persister frequency ofE. coliwas increased when the cells contained elevated levels of intracellular fumarate. Genetic perturbations of the electron transport chain (ETC), a metabolite supplementation assay, and even the toxin-antitoxin-relatedhipA7mutation indicated that surplus fumarate markedly elevated theE. colipersister frequency. AnE. colistrain lacking succinate dehydrogenase (SDH), thereby showing a lower intracellular fumarate concentration, was killed ∼1,000-fold more effectively than the wild-type strain in the stationary phase. It appears thatSDHandFRDrepresent a paired system that gives rise to and maintainsE. colipersisters by producing and utilizing fumarate, respectively.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Succinato Desidrogenase/genética , Ampicilina/farmacologia , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Fumaratos/metabolismo , Perfilação da Expressão Gênica , Biblioteca Gênica , Canamicina/farmacologia , Testes de Sensibilidade Microbiana , Norfloxacino/farmacologia , Óperon , Succinato Desidrogenase/deficiência
12.
Biochem Biophys Res Commun ; 465(4): 864-70, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26319432

RESUMO

Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins generate energy required for membrane fusion. They form a parallelly aligned four-helix bundle called the SNARE complex, whose formation is initiated from the N terminus and proceeds toward the membrane-proximal C terminus. Previously, we have shown that this zippering-like process can be controlled by several flavonoids that bind to the intermediate structures formed during the SNARE zippering. Here, our aim was to test whether the fluorescence resonance energy transfer signals that are observed during the inner leaflet mixing assay indeed represent the hemifused vesicles. We show that changes in vesicle size accompanying the merging of bilayers is a good measure of progression of the membrane fusion. Two merging vesicles with the same size D in diameter exhibited their hydrodynamic diameters 2D + d (d, intermembrane distance), 2D and 2D as membrane fusion progressed from vesicle docking to hemifusion and full fusion, respectively. A dynamic light scattering assay of membrane fusion suggested that myricetin stopped membrane fusion at the hemifusion state, whereas delphinidin and cyanidin prevented the docking of the vesicles. These results are consistent with our previous findings in fluorescence resonance energy transfer assays.


Assuntos
Flavonoides/metabolismo , Fusão de Membrana/fisiologia , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animais , Difusão Dinâmica da Luz , Flavonoides/farmacologia , Transferência Ressonante de Energia de Fluorescência , Hidrodinâmica , Bicamadas Lipídicas/metabolismo , Fusão de Membrana/efeitos dos fármacos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
Biochem Biophys Res Commun ; 450(1): 831-6, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24960195

RESUMO

Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca(2+)-independent manner, while myricetin inhibits Ca(2+)-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Zíper de Leucina/efeitos dos fármacos , Fusão de Membrana/fisiologia , Neurônios/metabolismo , Polifenóis/farmacologia , Proteínas SNARE/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células PC12 , Ratos
14.
J Biotechnol ; 182-183: 30-6, 2014 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-24768798

RESUMO

Hexanoic acid can be used for diverse industrial applications and is a precursor for fine chemistry. Although some natural microorganisms have been screened and evolved to produce hexanoic acid, the construction of an engineered biosynthetic pathway for producing hexanoic acid in yeast has not been reported. Here we constructed hexanoic acid pathways in Kluyveromyces marxianus by integrating 5 combinations of seven genes (AtoB, BktB, Crt, Hbd, MCT1, Ter, and TES1), by which random chromosomal sites of the strain are overwritten by the new genes from bacteria and yeast. One recombinant strain, H4A, which contained AtoB, BktB, Crt, Hbd, and Ter, produced 154mg/L of hexanoic acid from galactose as the sole substrate. However, the hexanoic acid produced by the H4A strain was re-assimilated during the fermentation due to the reverse activity of AtoB, which condenses two acetyl-CoAs into a single acetoacetyl-CoA. This product instability could be overcome by the replacement of AtoB with a malonyl CoA-acyl carrier protein transacylase (MCT1) from Saccharomyces cerevisiae. Our results suggest that Mct1 provides a slow but stable acetyl-CoA chain elongation pathway, whereas the AtoB-mediated route is fast but unstable. In conclusion, hexanoic acid was produced for the first time in yeast by the construction of chain elongation pathways comprising 5-7 genes in K. marxianus.


Assuntos
Caproatos/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Engenharia Metabólica/métodos , Biotecnologia , Caproatos/análise , Etanol/metabolismo , Fermentação , Galactose/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas
15.
J Biotechnol ; 167(3): 323-5, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23845272

RESUMO

While Kluyveromyces marxianus is a promising yeast strain for biotechnological applications, genetic engineering of this strain is still challenging, especially when multiple genes are to be transformed. Sequential gene integration, which takes advantage of repetitive insertion/excision of the URA3 gene as a marker, has been the best option until now, because the URA3-deletion mutant is the only precondition for this method. However, we found that the introduced gene is co-excised during the URA3 excision step for next gene introduction, resulting in a very low cumulative probability (<1.57×10⁻6 % for 4 genes) of integrating all genes of interest. To overcome this extremely low probability, and to reduce labor and time, all 4 genes were simultaneously transformed. Surprisingly, the infamously high 'non-homologous end joining' activity of K. marxianus enabled simultaneous integration of all 4 genes in a single step, with a probability of 7.9%. Various K. marxianus strains could also be similarly transformed. Our finding not only reduces the labor and time required for such procedures, but also removes a number of preconditions, such as pre-made vectors, selection markers and knockout mutants, which are needed to introduce many genes into K. marxianus.


Assuntos
Cromossomos Fúngicos , Genes Fúngicos , Engenharia Genética/métodos , Kluyveromyces/genética , Proteínas Fúngicas/genética , Deleção de Sequência , Transformação Genética
16.
Appl Microbiol Biotechnol ; 97(5): 2029-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22911091

RESUMO

Kluyveromyces marxianus is now considered one of the best choices of option for industrial applications of yeast because the strain is able to grow at high temperature, utilizes various carbon sources, and grows fast. However, the use of K. marxianus as a host for industrial applications is still limited. This limitation is largely due to a lack of knowledge on the characteristics of the promoters since the time and amount of protein expression is strongly dependent on the promoter employed. In this study, four well-known constitutive promoters (P(CYC), P(TEF), P(GPD), and P(ADH)) of Saccharomyces cerevisiae were characterized in K. marxianus in terms of protein expression level and their stochastic behavior. After constructing five URA3-auxotrophic K. marxianus strains and a plasmid vector, four cassettes each comprising one of the promoters--the gene for the green fluorescence protein (GFP)--CYC1 terminator (T(CYC)) were inserted into the vector. GFP expression under the control of each one of the promoters was analyzed by reverse transcription PCR, fluorescence microscopy, and flow cytometer. Using these combined methods, the promoter strength was determined to be in the order of P(GPD) > P(ADH) ∼ P(TEF) >> P(CYC). All promoters except for the P(CYC) exhibited three distinctive populations, including non-expressing cells, weakly expressing cells, and strongly expressing cells. The relative ratios between populations were strongly dependent on the promoter and culture time. Forward scattering was independent of GFP fluorescence intensity, indicating that the different fluorescence intensities were not just due to different cell sizes derived from budding. It also excluded the possibility that the non-expressing cells resulted from plasmid loss because plasmid stability was maintained at almost 100 % over the culture time. The same cassettes, cloned into a single copy plasmid pRS416 and transformed into S. cerevisiae, showed only one population. When the cassettes were integrated into the chromosome, the stochastic behavior was markedly reduced. These combined results imply that the gene expression stochasticity should be overcome in order to use this strain for delicate metabolic engineering, which would require the co-expression of several genes.


Assuntos
Expressão Gênica , Kluyveromyces/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Fusão Gênica Artificial , Genes Reporter , Vetores Genéticos , Instabilidade Genômica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Plasmídeos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
17.
Biochem J ; 450(3): 537-46, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23252429

RESUMO

Anti-allergic effects of dietary polyphenols were extensively studied in numerous allergic disease models, but the molecular mechanisms of anti-allergic effects by polyphenols remain poorly understood. In the present study, we show that the release of granular cargo molecules, contained in distinct subsets of granules of mast cells, is specifically mediated by two sets of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, and that various polyphenols differentially inhibit the formation of those SNARE complexes. Expression analysis of RBL-2H3 cells for 11 SNARE genes and a lipid mixing assay of 24 possible combinations of reconstituted SNAREs indicated that the only two active SNARE complexes involved in mast cell degranulation are Syn (syntaxin) 4/SNAP (23 kDa synaptosome-associated protein)-23/VAMP (vesicle-associated membrane protein) 2 and Syn4/SNAP-23/VAMP8. Various polyphenols selectively or commonly interfered with ternary complex formation of these two SNARE complexes, thereby stopping membrane fusion between granules and plasma membrane. This led to the differential effect of polyphenols on degranulation of three distinct subsets of granules. These results suggest the possibility that formation of a variety of SNARE complexes in numerous cell types is controlled by polyphenols which, in turn, might regulate corresponding membrane trafficking.


Assuntos
Degranulação Celular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Polifenóis/farmacologia , Proteínas SNARE/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Histamina/metabolismo , Humanos , Mastócitos/metabolismo , Mastócitos/fisiologia , Complexos Multiproteicos/metabolismo , Polifenóis/metabolismo , Ligação Proteica/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Vesículas Transportadoras/classificação , Vesículas Transportadoras/fisiologia , beta-N-Acetil-Hexosaminidases/metabolismo
18.
Pharm Biol ; 50(9): 1157-67, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22881141

RESUMO

CONTEXT: Botulinum neurotoxins (BoNTs) are popularly used to treat various diseases and for cosmetic purposes. They act by blocking neurotransmission through specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, several polyphenols were shown to interfere with SNARE complex formation by wedging into the hydrophobic core interface, thereby leading to reduced neuroexocytosis. OBJECTIVE: In order to find industrially-viable plant extract that functions like BoNT, 71 methanol extracts of flowers were screened and BoNT-like activity of selected extract was evaluated. MATERIALS AND METHODS: After evaluating the inhibitory effect of 71 flower methanol extracts on SNARE complex formation, seven candidates were selected and they were subjected to SNARE-driven membrane fusion assay. Neurotransmitter release from neuronal PC12 cells and SNARE complex formation inside the cell was also evaluated. Finally, the effect of one selected extract on muscle contraction and digit abduction score was determined. RESULTS: The extract of Potentilla chinensis Ser. (Rosaceae)(Chinese cinquefoil) flower inhibited neurotransmitter release from neuronal PC12 cells by approximately 90% at a concentration of 10 µg/mL. The extract inhibited neuroexocytosis by interfering with SNARE complex formation inside cells. It reduced muscle contraction of phrenic nerve-hemidiaphragm by approximately 70% in 60 min, which is comparable to the action of the Ca²âº-channel blocker verapamil and BoNT type A. DISCUSSION AND CONCLUSION: While BoNT blocks neuroexocytosis by cleaving SNARE proteins, the Potentilla chinensis extract exhibited the same activity by inhibiting SNARE complex formation. The extract paralyzed muscle as efficiently as BoNT, suggesting the potential versatility in cosmetics and therapeutics.


Assuntos
Fusão de Membrana/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Fármacos Neuromusculares/farmacologia , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Potentilla/química , Proteínas SNARE/antagonistas & inibidores , Animais , Toxinas Botulínicas/efeitos adversos , Toxinas Botulínicas/farmacologia , Descoberta de Drogas , Exocitose/efeitos dos fármacos , Feminino , Flores/química , Extremidade Inferior , Camundongos , Camundongos Endogâmicos ICR , Músculo Esquelético/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuromusculares/efeitos adversos , Neurônios/metabolismo , Norepinefrina/metabolismo , Células PC12 , Extratos Vegetais/efeitos adversos , Ratos , Proteínas SNARE/metabolismo , Transmissão Sináptica/efeitos dos fármacos
19.
Int J Nanomedicine ; 7: 2805-16, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745543

RESUMO

BACKGROUND: Nanoparticles undergoing physicochemical changes to release enclosed drugs at acidic pH conditions are promising vehicles for antitumor drug delivery. Among the various drug carriers, high-density lipoprotein (HDL)-like nanoparticles have been shown to be beneficial for cancer chemotherapy, but have not yet been designed to be pH-responsive. METHODS AND RESULTS: In this study, we developed a pH-responsive HDL-like nanoparticle that selectively releases paclitaxel, a model antitumor drug, at acidic pH. While the well known HDL-like nanoparticle containing phospholipids, phosphatidylcholine, and apolipoprotein A-I, as well as paclitaxel (PTX-PL-NP) was structurally robust at a wide range of pH values (3.8-10.0), the paclitaxel nanoparticle that only contained paclitaxel and apoA-I selectively released paclitaxel into the medium at low pH. The paclitaxel nanoparticle was stable at physiological and basic pH values, and over a wide range of temperatures, which is a required feature for efficient cancer chemotherapy. The homogeneous assembly enabled high paclitaxel loading per nanoparticle, which was 62.2% (w/w). The molar ratio of apolipoprotein A-I and paclitaxel was 1:55, suggesting that a single nanoparticle contained approximately 110 paclitaxel particles in a spherical structure with a 9.2 nm diameter. Among the several reconstitution methods applied, simple dilution following sonication enhanced the reconstitution yield of soluble paclitaxel nanoparticles, which was 0.66. As a result of the pH responsiveness, the anticancer effect of paclitaxel nanoparticles was much more potent than free paclitaxel or PTX-PL-NP. CONCLUSION: The anticancer efficacy of both paclitaxel nanoparticles and PTX-PL-NP was dependent on the expression of scavenger receptor class B type I, while the killing efficacy of free paclitaxel was independent of this receptor. We speculate that the pH responsiveness of paclitaxel nanoparticles enabled efficient endosomal escape of paclitaxel before lysosomal break down. This is the first report on pH-responsive nanoparticles that do not contain any synthetic polymer.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apolipoproteína A-I/química , Apolipoproteína A-I/farmacocinética , Apolipoproteína A-I/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Conformação Molecular , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Tamanho da Partícula , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia
20.
Planta Med ; 78(3): 233-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22109835

RESUMO

Most cosmetic and therapeutic applications of Clostridium botulinum neurotoxin (BoNT) are related to muscle paralysis caused by the blocking of neurotransmitter release at the neuromuscular junction. BoNT specifically cleaves SNARE proteins at the nerve terminal and impairs neuroexocytosis. Recently, we have shown that several polyphenols inhibit neurotransmitter release from neuronal PC12 cells by interfering with SNARE complex formation. Based on our previous result, we report here that myricetin, delphinidin, and cyanidin indeed paralyze muscle by inhibiting acetylcholine release at the neuromuscular junction. While the effect of myricetin on muscle paralysis was modest compared to BoNT/A, myricetin exhibited a shorter response time than BoNT/A. Intraperitoneally-injected myricetin at an extreme dose of 1000 mg/kg did not induce death of mice, alleviating the safety issue. Thus, these polyphenols might be useful in treating various human hypersecretion diseases for which BoNT/A has been the only option of choice.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Cosméticos/farmacologia , Bloqueadores Neuromusculares/farmacologia , Polifenóis/farmacologia , Proteínas SNARE/antagonistas & inibidores , Animais , Antocianinas/farmacologia , Feminino , Flavonoides/farmacologia , Humanos , Camundongos , Fitoterapia , Extratos Vegetais/farmacologia , Proteínas SNARE/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA