Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(30): 34105-34114, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32613826

RESUMO

We propose an integrated, self-powered, flexible electronic skin device containing an alginate-derived polymer dot (A-PD)-incorporated mineralized hydrogel-based energy storage unit and a chitosan-derived n-type carbon dot (N-CD)-based solar cell for an energy-harvesting unit. This study demonstrates a unique architecture of mineralized hydrogel comprising A-PD-incorporated poly(acrylic acid) (PAA)/CaCO3/laponite containing soft and sensitive layers, deposited with a polyaniline electrode to serve as an energy storage unit. The self-assembly was achieved through the ionic cross-linking between A-PD and PAA driven by the mineralization process, resulting in excellent dimensional stability and improved mechanical properties of the hydrogel. The sp2 carbon-rich A-PD enhances the electrochemical performance and the overall photon-to-electrical conversion and storage efficiency for self-powered devices by the formation of the bridge of electrons between the ionized polymer and metal ion. The capacitive sensor developed in this study exhibits high sensitivity in detecting small pressure changes, such as the falling of small water droplets. The self-powered sensing device can detect and monitor various human motions continuously by harvesting light energy from outdoor sunlight. Furthermore, the energy-autonomous device exhibits unique responses for handwriting characters stably and repeatedly. The proposed system may be applicable to human-machine interfaces, biomonitoring systems, secure communication, and wearable devices.


Assuntos
Resinas Acrílicas/química , Hidrogéis/química , Pontos Quânticos/química , Dispositivos Eletrônicos Vestíveis , Alginatos/química , Carbonato de Cálcio/química , Carbono/química , Quitosana/química , Eletrodos , Silicatos/química , Energia Solar
2.
J Ginseng Res ; 40(1): 18-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26843818

RESUMO

BACKGROUND: It is not clear whether ginseng affects cyclosporine A (CsA)-induced desirable immunosuppressive action. In this study, we evaluated the immunological influence of combined treatment of ginseng with CsA. METHODS: Using CD4+ T cells from mouse spleens stimulated with the T cell receptor (TCR) or allogeneic antigen-presenting cells (APCs), we examined the differentiation of naïve T cells into T helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and their cytokine production during treatment by Korean Red Ginseng extract (KRGE) and/or CsA. The influence of KRGE on the allogeneic T cell response was evaluated by mixed lymphocyte reaction (MLR). We also evaluated whether signal transducer and activator of transcription 3 (STAT3) and STAT5 are implicated in this regulation. RESULTS: Under TCR stimulation, KRGE treatment did not affect the population of CD4+interferon gamma (IFNγ)+ and CD4+interleukin (IL)-4+ cells and their cytokine production compared with CsA alone. Under the Th17-polarizing condition, KRGE significantly reduced the number of CD4+IL-17+ cells and CD4+/phosphorylated STAT3 (p-STAT3)+ cells, but increased the number of CD4+CD25+forkhead box P3 (Foxp3)+ cells and CD4+/p-STAT5+ cells compared with CsA alone. In allogeneic APCs-stimulated CD4+ T cells, KRGE significantly decreased total allogeneic T cell proliferation. Consistent with the effects of TCR stimulation, KRGE reduced the number of CD4+IL-17+ cells and increased the number of CD4+CD25+Foxp3+ cells under the Th17-polarizing condition. CONCLUSION: KRGE has immunological benefits through the reciprocal regulation of Th17 and Treg cells during CsA-induced immunosuppression.

3.
PLoS One ; 9(6): e100798, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959755

RESUMO

BACKGROUND: Tacrolimus (TAC)-induced pancreatic islet injury is one of the important causes of new-onset diabetes in transplant recipients. This study was performed to evaluate whether a dipeptidyl peptidase IV (DPP IV) inhibitor is effective in improving TAC-induced diabetes mellitus by reducing pancreatic islet injury. METHODS: Rats were treated with TAC (1.5 mg/kg, subcutaneously) and the DPP IV inhibitor MK-0626 (10 or 20 mg/kg, oral gavage) for 4 weeks. The effect of MK-0626 on TAC-induced diabetes was evaluated by assessing pancreatic islet function, histopathology. TAC-induced incretin dysfunction was also examined based on active glucagon-like peptide-1 (GLP-1) levels in the serum after glucose loading. The protective effect of MK-0626 was evaluated by measuring markers of oxidative stress, oxidative resistance, and apoptosis. To determine whether enhanced GLP-1 signaling is associated with these protective effects, we measured the expression of the GLP-1 receptor (GLP-1R) and the effect of the GLP-1 analog exendin-4 on cell viability and oxidative stress in isolated islets. RESULTS: MK-0626 treatment attenuated TAC-induced pancreatic islet dysfunction and islet morphology. TAC treatment led to a defect in active GLP-1 secretion; however, MK-0626 reversed these effects. TAC treatment increased the level of 8-hydroxy-2'-deoxyguanosine (8-OHdG), the number of apoptotic death, and the level of active caspase-3, and decreased the level of manganese superoxide dismutase and heme oxygenase-1; MK-0626 treatment reversed these changes. MK-0626 treatment restored the expression of GLP-1R, and direct administration of exendin-4 to isolated islets reduced TAC-induced cell death and 8-OHdG expression. CONCLUSIONS: The DPP IV inhibitor MK-0626 was an effective antidiabetic agent that exerted antioxidative and antiapoptotic effects via enhanced GLP-1 signaling in TAC-induced diabetics.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Tacrolimo/efeitos adversos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Dano ao DNA/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Desoxiguanosina/urina , Diabetes Mellitus Experimental , Ilhotas Pancreáticas/patologia , Masculino , Ratos , Ratos Sprague-Dawley
4.
Transplantation ; 98(1): 22-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24825522

RESUMO

BACKGROUND: Drug-drug interaction between everolimus (EVR) and tacrolimus (TAC) is still undetermined. We evaluated whether EVR enhances TAC-induced organ injury through drug-drug interaction. METHODS: Tacrolimus (6 mg/kg) was given to rats with or without EVR (1 or 2 mg/kg) orally for 4 weeks. The influences of EVR on TAC-induced organ injury were evaluated in terms of nephrotoxicity and pancreatic islet dysfunction. Drug-drug interaction was evaluated by measuring the level of each drug in the blood and target tissue, and the correlation between the two drugs was observed in the blood and target tissue. The concentration of 8-hydroxy-2'-deoxyguanosine in blood or urine was measured as a marker of oxidative stress, and correlation between drug levels and oxidative stress was also evaluated. RESULTS: Tacrolimus treatment alone did not cause overt renal or pancreatic islet injury, but the addition of EVR significantly enhanced the TAC-induced organ injury, as demonstrated by aggravated nephrotoxicity and pancreatic islet dysfunction. The combination of EVR and TAC significantly increased each drug level in the target tissues as well as in blood, and there was good correlation between the two drugs in blood and target organs. The serum and urinary levels of 8-hydroxy-2'-deoxyguanosine were significantly increased in the TAC+EVR group compared with the TAC- or EVR-alone group and were well correlated with drug levels in blood and tissues. CONCLUSIONS: Everolimus enhances TAC-induced target organ injury by increasing oxidative stress via pharmacological interaction in blood and target tissue. This finding provides a better understanding of the effects of EVR when used in combination with TAC.


Assuntos
Imunossupressores/toxicidade , Ilhotas Pancreáticas/efeitos dos fármacos , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sirolimo/análogos & derivados , Tacrolimo/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Desoxiguanosina/urina , Interações Medicamentosas , Quimioterapia Combinada , Everolimo , Imunossupressores/sangue , Imunossupressores/farmacocinética , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Rim/metabolismo , Rim/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Sirolimo/sangue , Sirolimo/farmacocinética , Sirolimo/toxicidade , Tacrolimo/sangue , Tacrolimo/farmacocinética
5.
Nephrology (Carlton) ; 19(8): 490-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24796922

RESUMO

AIMS: Chronic cyclosporine (CsA) treatment induces autophagic cell death characterized by excessive autophagosome formation and decreased autophagic clearance. In this study, we evaluated the influence of ginseng treatment on autophagy in chronic CsA nephropathy. METHODS: Mice were treated with CsA (30 mg/kg) with or without Korean red ginseng (KRG) extract (0.2, 0.4 g/kg) for 4 weeks. The effect of KRG on CsA-induced autophagosome formation was measured using phospholipid-conjugated form of LC3-II, beclin-1, and autophagic vacuoles were visualized with electron microscopy. Autophagic clearance was evaluated by accumulation of p62/sequestosome 1 (p62) and ubiquitin, then double immunolabeling for p62 and either LC3-II or ubiquitin. To demonstrate the association between the effects of KRG treatment on autophagy and apoptosis, double immunolabelling for LC3-II and active caspase-3 was performed. Multiple autophagy pathways were also examined. RESULTS: KRG co-treatment significantly decreased the expression of LC3-II, beclin-1, and the number of autophagic vacuoles compared with the CsA group, and these changes were accompanied by improvements in renal dysfunction and fibrosis. CsA-induced accumulation of p62 and ubiquitin was also decreased by KRG treatment, and these proteins were colocalized with LC3-II and with each other. KRG treatment simultaneously reduced the expression of both active caspase-3 and LC3-II in the injured area. KRG treatment during chronic CsA nephropathy induced the expression of AKT/mTOR, which is a pathway that inhibits autophagy, and reduced AMPK expression. CONCLUSION: Ginseng treatment attenuated CsA-induced excessive autophagosome formation and autophagic aggregates. These findings suggest that ginseng has a renoprotective effect against CsA-induced autophagic cell death.


Assuntos
Autofagia/efeitos dos fármacos , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Panax , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Doença Crônica , Ciclosporina/efeitos adversos , Nefropatias/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos ICR
6.
PLoS One ; 8(8): e72685, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009697

RESUMO

BACKGROUND: This study was performed to investigate whether ginseng has a protective effect in an experimental mouse model of cyclosporine-induced pancreatic injury. METHODS: Mice were treated with cyclosporine (30 mg/kg/day, subcutaneously) and Korean red ginseng extract (0.2 or 0.4 g/kg/day, oral gavage) for 4 weeks while on a 0.01% salt diet. The effect of ginseng on cyclosporine-induced pancreatic islet dysfunction was investigated by an intraperitoneal glucose tolerance test and measurements of serum insulin level, ß cell area, macrophage infiltration, and apoptosis. Using an in vitro model, we further examined the effect of ginseng on a cyclosporine-treated insulin-secreting cell line. Oxidative stress was measured by the concentration of 8-hydroxy-2'-deoxyguanosine in serum, tissue sections, and culture media. RESULTS: Four weeks of cyclosporine treatment increased blood glucose levels and decreased insulin levels, but cotreatment with ginseng ameliorated the cyclosporine-induced glucose intolerance and hyperglycemia. Pancreatic ß cell area was also greater with ginseng cotreatment compared with cyclosporine monotherapy. The production of proinflammatory molecules, such as induced nitric oxide synthase and cytokines, and the level of apoptotic cell death also decreased in pancreatic ß cell with ginseng treatment. Consistent with the in vivo results, the in vitro study showed that the addition of ginseng protected against cyclosporine-induced cytotoxicity, inflammation, and apoptotic cell death. These in vivo and in vitro changes were accompanied by decreases in the levels of 8-hydroxy-2'-deoxyguanosine in pancreatic ß cell in tissue section, serum, and culture media during cotreatment of ginseng with cyclosporine. CONCLUSIONS: The results of our in vivo and in vitro studies demonstrate that ginseng has a protective effect against cyclosporine-induced pancreatic ß cell injury via reducing oxidative stress.


Assuntos
Panax/química , Pancreatopatias/tratamento farmacológico , Pancreatopatias/metabolismo , Extratos Vegetais/administração & dosagem , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Ciclosporina/efeitos adversos , Modelos Animais de Doenças , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Testes de Função Renal , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Nitritos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/fisiopatologia , Pancreatopatias/induzido quimicamente
7.
Transplantation ; 96(2): 146-53, 2013 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23765110

RESUMO

BACKGROUND: Cyclosporine A (CsA)-associated oxidative stress has been proposed as an important mechanism of renal injury. This study was designed to examine whether N-acetylcysteine (NAC), a well-known antioxidant, affects Klotho, antiaging gene, expression and its signaling pathway in an experimental model of chronic CsA nephropathy. METHODS: Mice maintained on a low-sodium diet were given vehicle (olive oil, 1 mL/kg/day), CsA (30 mg/kg/day), NAC (150 mg/kg/day), or a combination of CsA and NAC for 4 weeks. The effect of NAC on CsA-induced renal injury was evaluated with basic parameters, histopathology, and markers of oxidative stress [8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion and manganese superoxide dismutase (MnSOD) expression]. The influence of NAC on Klotho and its signal pathway (p-AKT and p-FoxO1) in CsA-treated mouse kidney was evaluated with immunohistochemistry and/or immunoblot. RESULTS: Concomitant administration of CsA and NAC significantly improved renal function and attenuated tubulointerstitial fibrosis, and these changes were accompanied by decreased urinary 8-OHdG level and increased MnSOD expression. NAC treatment preserved Klotho gene expression compared with CsA treatment alone (P < 0.05), and this correlated with urinary 8-OHdG excretion (r = -0.934) and MnSOD expression (r = 0.873, P < 0.001 for both). Concomitant treatment of CsA and NAC translocated FoxO1 from the cytoplasm to the nucleus, implicating dephosphorylation of FoxO1 by NAC in p-AKT/p-FoxO1 pathway. CONCLUSION: NAC treatment preserves Klotho expression and modifies p-AKT/p-FoxO1 pathway in chronic CsA nephropathy.


Assuntos
Acetilcisteína/farmacologia , Ciclosporina/efeitos adversos , Glucuronidase/genética , Glucuronidase/metabolismo , Imunossupressores/efeitos adversos , Nefropatias/prevenção & controle , 8-Hidroxi-2'-Desoxiguanosina , Acetilcisteína/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Doença Crônica , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Modelos Animais de Doenças , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
8.
PLoS One ; 8(3): e59693, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555748

RESUMO

The aim of this study was to investigate whether hATMSCs protect against cyclosporine (CsA)-induced renal injury. CsA (7.5 mg/kg) and hATMSCs (3×10(6)/5 mL) were administered alone and together to rats for 4 weeks. The effect of hATMSCs on CsA-induced renal injury was evaluated by assessing renal function, interstitial fibrosis, infiltration of inflammatory cells, and apoptotic cell death. Four weeks of CsA-treatment produced typical chronic CsA-nephropathy. Combined treatment with CsA and hATMSCs did not prevent these effects and showed a trend toward further renal deterioration. To evaluate why hATMSCs aggravated CsA-induced renal injury, we measured oxidative stress, a major mechanism of CsA-induced renal injury. Both urine and serum 8-hydroxydeoxyguanosine(8-OHdG) levels were higher in the CsA+hATMSCs group than in the CsA group (P<0.05). An in vitro study showed similar results. Although the rate of apoptosis did not differ significantly between HK-2 cells cultured in hATMSCs-conditioned medium and those cultured in DMEM, addition of CsA resulted in greater apoptosis in HK-2 cells cultured in hATMSCs-conditioned medium. Addition of CsA increased oxidative stress in the hATMSCs-conditioned medium. The results of our study suggest that treatment with hATMSCs may aggravate CsA-induced renal injury because hATMSCs cause oxidative stress in the presence of CsA.


Assuntos
Tecido Adiposo/citologia , Ciclosporina/efeitos adversos , Rim/efeitos dos fármacos , Rim/metabolismo , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Meios de Cultivo Condicionados , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Desoxiguanosina/urina , Fibrose , Humanos , Rim/patologia , Rim/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
9.
Am J Nephrol ; 37(5): 421-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23594788

RESUMO

BACKGROUND: This study was performed to investigate whether ginseng extract has a protective effect in an experimental mouse model of chronic cyclosporine (CsA) nephropathy. METHODS: Mice were treated with CsA (30 mg/kg/day, subcutaneously) with or without Korean red ginseng extract (KRG) (0.2, 0.4 g/kg/day, orally) on a 0.01% salt diet for 4 weeks. The effect of KRG on CsA-induced renal injury was evaluated by assessing renal function and pathology, mediators of inflammation, tubulointerstitial fibrosis and apoptotic cell death. Using an in vitro model, we also examined the effect of KRG on CsA-treated proximal tubular cells (HK-2). Oxidative stress was measured by assessing 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in 24-hour urine, tissue sections, and culture media. RESULTS: Four weeks of CsA treatment caused renal dysfunction, typical pathologic lesions and apoptotic cell death. KRG treatment reduced serum creatinine and blood urea nitrogen and histopathology and increased creatinine clearance. Proinflammatory and profibrotic molecules such as induced nitric oxide synthase, cytokines, transforming growth factor (TGF)-ß1 and TGF-ß1-inducible gene h3 and apoptotic cell death, also decreased with KRG treatment. Consistent with these results, in vitro studies showed that addition of KRG protected against CsA-induced morphological changes, cytotoxicity, inflammation, and apoptotic cell death as demonstrated by annexin V binding. These changes were accompanied by decrease in the level of 8-OHdG in urine and culture supernatant after KRG treatment. CONCLUSION: The results of our in vivo and in vitro studies demonstrate that KRG has a protective effect in CsA-induced renal injury via reducing oxidative stress.


Assuntos
Ciclosporina/efeitos adversos , Imunossupressores/efeitos adversos , Nefropatias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Panax , Extratos Vegetais/uso terapêutico , Animais , Biomarcadores/metabolismo , Linhagem Celular , Interações Ervas-Drogas , Humanos , Nefropatias/induzido quimicamente , Nefropatias/patologia , Masculino , Camundongos , Fitoterapia , Extratos Vegetais/farmacologia , Distribuição Aleatória
10.
J Immunol ; 176(9): 5652-61, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16622035

RESUMO

IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4(+) T cells and stimulating the proliferation of memory CD4(+) T cells. We investigated the pathogenic role of IL-23 in CD4(+) T cells in mice lacking the IL-1R antagonist (IL-1Ra(-/-)), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra(-/-) mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1beta further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4(+) T cells of IL-1Ra(-/-) mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4(+) T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-kappaB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra(-/-) model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.


Assuntos
Artrite/metabolismo , Interleucina-17/biossíntese , Interleucinas/biossíntese , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Sialoglicoproteínas/metabolismo , Transdução de Sinais , Animais , Artrite/genética , Artrite/patologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1/biossíntese , Interleucina-23 , Subunidade p19 da Interleucina-23 , Interleucinas/genética , Interleucinas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Sialoglicoproteínas/deficiência , Sialoglicoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA