Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 11: 858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922435

RESUMO

Globins are small heme-proteins that reversibly bind oxygen. Their most prominent roles in vertebrates are the transport and storage of O2 for oxidative energy metabolism, but recent research has suggested alternative, non-respiratory globin functions. In the species-rich and ecologically highly diverse taxon of arthropods, the copper-containing hemocyanin is considered the main respiratory protein. However, recent studies have suggested the presence of globin genes and their proteins in arthropod taxa, including model species like Drosophila. To systematically assess the taxonomic distribution, evolution and diversity of globins in arthropods, we systematically searched transcriptome and genome sequence data and found a conserved, widespread occurrence of three globin classes in arthropods: hemoglobin-like (HbL), globin X (GbX), and globin X-like (GbXL) protein lineages. These globin types were previously identified in protostome and deuterostome animals including vertebrates, suggesting their early ancestry in Metazoa. The HbL genes show multiple, lineage-specific gene duplications in all major arthropod clades. Some HbL genes (e.g., Glob2 and 3 of Drosophila) display particularly fast substitution rates, possibly indicating the evolution of novel functions, e.g., in spermatogenesis. In contrast, arthropod GbX and GbXL globin genes show high evolutionary stability: GbXL is represented by a single-copy gene in all arthropod groups except Brachycera, and representatives of the GbX clade are present in all examined taxa except holometabolan insects. GbX and GbXL both show a brain-specific expression. Most arthropod GbX and GbXL proteins, but also some HbL variants, include sequence motifs indicative of potential N-terminal acylation (i.e., N-myristoylation, 3C-palmitoylation). All arthropods except for the brachyceran Diptera harbor at least one such potentially acylated globin copy, confirming the hypothesis of an essential, conserved globin function associated with the cell membrane. In contrast to other animals, the fourth ancient globin lineage, represented by neuroglobin, appears to be absent in arthropods, and the putative arthropod orthologs of the fifth metazoan globin lineage, androglobin, lack a recognizable globin domain. Thus, the remarkable evolutionary stability of some globin variants is contrasted by occasional dynamic gene multiplication or even loss of otherwise strongly conserved globin lineages in arthropod phylogeny.

2.
Pharm Res ; 35(6): 118, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666962

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is related with a poor prognosis as patients do hardly benefit from approved therapies. CD138 (Syndecan-1) is upregulated on human breast cancers. Indatuximab ravtansine (BT062) is an antibody-drug-conjugate that specifically targets CD138-expressing cells and has previously shown clinical activity in multiple myeloma. Here we show indatuximab ravtansine as a potential mono- and combination therapy for TNBC. METHODS: The effects of indatuximab ravtansine were assessed in vitro in SK-BR-3 and T47D breast cancer cell lines. The in vivo effects of indatuximab ravtansine alone and in combination with docetaxel or paclitaxel were assessed in MAXF401, MAXF1384 and MAXF1322 xenograft TNBC models. RESULTS: CD138+ SK-BR-3 and T47D cells were highly sensitive to indatuximab ravtansine. The high CD138-expressing MAXF401 xenograft model demonstrated strong inhibition of tumor growth with 4 mg/kg indatuximab ravtansine. High doses of indatuximab ravtansine (8 mg/kg), docetaxel and the combination of both led to complete remission. In the low CD138-expressing MAXF1384 xenograft model, only combination of indatuximab ravtansine and docetaxel demonstrated a significant efficacy. In the MAXF1322 xenograft model, indatuximab ravtansine alone and in combination with paclitaxel elicited complete remission. CONCLUSIONS: These data demonstrate potential use of indatuximab ravtansine in combination with docetaxel or paclitaxel for CD138-positive TNBC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Imunoconjugados/farmacologia , Sindecana-1/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mama/patologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Feminino , Humanos , Imunoconjugados/uso terapêutico , Maitansina/análogos & derivados , Maitansina/farmacologia , Maitansina/uso terapêutico , Camundongos , Camundongos Nus , Paclitaxel/uso terapêutico , Sindecana-1/metabolismo , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 13(4): e0195823, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672587

RESUMO

An increasing number of monoclonal antibodies and derivatives such as antibody-drug conjugates (ADC) are of the IgG1 and IgG4 isotype with distinct structural and functional properties. In cases where antibody-mediated cytotoxicity is not desired, IgG4 is often used, as its Fc region is relatively poor at inducing antibody-dependent cell-mediated or complement-dependent cytotoxicity. IgG4 ADCs with highly cytotoxic drugs against proliferating target cells but which lack or have diminished antibody effector functions against quiescent cells may have a favorable safety profile compared to IgG1. Another unique property of the IgG4 subclass is the capability to exchange half antibodies in vivo creating randomly bispecific antibodies. To investigate the functional properties of process-derived antibody species, and determine the influence of shuffling on the therapeutic efficacy, several model antibodies on the basis of the anti-CD138 antibody-drug conjugate BT062 (Indatuximab ravtansine) were generated: (I) A wild type nBT062, (II) a stable nBT062 comprising mutations to prevent half-antibody exchange, (III) a half nBT062 lacking covalent binding between two heavy chains and (IV) a stabilized, bispecific nBT062-natalizumab antibody with a second, monovalent specificity against CD49d. All nBT062 model variants were capable of CD138-specific binding and antigen-mediated internalization into cells. Furthermore, all nBT062 models inhibited tumor growth in vitro after conjugation with the maytansinoid DM4. The in vivo effects of the different molecular variants were assessed in the MAXF1322 xenograft model. The bispecific nBT062-natalizumab-DM4 demonstrated the least efficacy and was only moderately active even without the co-administration of a human IgG preparation. Wild type, stable and half nBT062-DM4 models demonstrated great anti-tumor activities. The efficacy of wild type and half nBT062-DM4 was reduced in the presence of IgG, while stable nBT062-DM4 was only marginally influenced. These pre-clinical data demonstrate the advantage of introducing half-antibody exchange-preventing mutations into therapeutic IgG4-based antibody drug-conjugates.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/farmacologia , Imunoconjugados/farmacologia , Imunoglobulina G/farmacologia , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos/imunologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Variação Genética , Humanos , Imunoconjugados/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos , Mutação , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Ann Transplant ; 21: 558-64, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27595792

RESUMO

BACKGROUND Cytomegalovirus hyperimmunoglobulin (CMV-HIG) preparations reduce mortality after solid organ transplantation. Polyspecific intravenous immunoglobulin (IVIg) products are also used prophylactically by some centers. Since direct comparative characterizations of the preparations are scarce, it is challenging to compare different clinical studies. MATERIAL AND METHODS The functionality of 2 CMV-HIG preparations (Cytotect® CP, Cytogam®) and 2 IVIg preparations (Ig Vena®, Flebogamma®) were compared in terms of: (i) CMV-specific immunoglobulin G (IgG) antibody levels determined by enzyme-linked immunoabsorbent assay (ELISA), (ii) avidity index using a CMV IgG avidity enzyme immunoassay, (iii) immunoblot assay against CMV-specific antigens, and (iv) anti-CMV microneutralization assay. RESULTS Median CMV-specific IgG antibody concentration was similar in the 2 CMV-HIG preparations (Cytotect® CP 101.8 PEIU/ml, Cytogam® 112.5 PEIU/ml) but markedly lower in the IVIg preparations (13.5 PEIU/ml and 21.3 PEIU/ml). CMV binding avidity was virtually identical for both CMV-HIG products (~90%). Immunoblot assay showed consistently high binding of both CMV-HIG preparations against all antigenic CMV glycoproteins tested. Recognition of some CMV-specific antigens (IE1, CM2, and p65) was weaker for the 2 IVIg products. Median CMV neutralizing antibody titers were identical for both CMV-HIG preparations (1:256), and 4-fold lower (1:64) for the IVIg products. CMV IgG antibody concentration correlated with the CMV neutralization titer. CONCLUSIONS Compared to the polyspecific IVIg products tested here, CMV-HIG preparations showed higher CMV binding activity and wider recognition of tested CMV-specific glycoprotein antigens, with markedly higher neutralizing activity. There do not appear to be any relevant distinctions between the Cytotect® CP and Cytogam® CMV-HIG products in terms of functional activity.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Imunoglobulinas/uso terapêutico , Transplante de Órgãos/métodos , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/transmissão , Humanos , Imunização Passiva/métodos , Testes de Neutralização , Transplante de Órgãos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA