Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mult Scler Relat Disord ; 79: 104951, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37639781

RESUMO

BACKGROUND: Treatment with cladribine tablets, a high-efficacy disease-modifying therapy (DMT), has been available in England since 2017 for patients with highly active relapsing multiple sclerosis (MS). Real-world data on treatment completion, persistence and switching in patients treated with cladribine tablets are beginning to emerge, but only small single and multicentre cohorts have reported so far. This longitudinal retrospective observational study (CLARENCE) evaluated a large cohort (>1900) of patients with highly active relapsing MS, receiving cladribine tablets across England, to determine rates of treatment completion, persistence and switching in the real world. METHODS: Using data obtained from Blueteq® forms, a compulsory requirement for DMT reimbursement in England, we evaluated rates of treatment completion (defined as the proportion of patients who received the full 2-year course of cladribine tablets), treatment persistence (defined as the proportion of patients who did not switch and/or discontinue treatment before receiving the full 2-year course) and treatment switch (defined as the proportion of patients who switched treatment from cladribine tablets to another DMT at any point after their first course). The change in Expanded Disability Status Scale (EDSS) score between Years 1 and 2 of treatment was also determined. All data were analysed descriptively. RESULTS: Blueteq® forms were completed for 1934 MS patients treated with cladribine tablets; of these patients, 691 (36%) were treatment naïve. The median EDSS score (range) at treatment initiation with cladribine tablets was 2.5 (0, 8.5). At time of analysis (September 2021, last follow-up point), a total of 1020 (53%) patients had completed the full 2-year course of cladribine tablets. At the same time point, 1762 (91%) patients were considered as treatment persistent (i.e., the patient had completed either 1 course of tablets with <18 months of follow-up data or the full 2-year course of cladribine tablets). Overall, 78 (4%) patients switched to another DMT at any point after their first course, which included 33 (1.7%) patients who switched after completing the full 2-year course. In terms of their disability, 469 (84%) patients had stable EDSS scores between Years 1 and 2 of treatment. CONCLUSION: In this large real-world study of patients receiving cladribine tablets across England, high rates of treatment persistence and low rates of switching were observed, with only 1.7% of patients receiving the full 2-year course and switching treatment. The majority (84%) of evaluable patients showed stable disability between Years 1 and 2 of treatment. These findings complement earlier data from clinical trials and real-world studies, confirming the effectiveness of cladribine tablets for patients with highly active relapsing MS.


Assuntos
Cladribina , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Cladribina/uso terapêutico , Inglaterra , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Comprimidos
2.
Cell Rep ; 39(3): 110701, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443178

RESUMO

Mitotic DNA synthesis (MiDAS) has been proposed to restart DNA synthesis during mitosis because of replication fork stalling in late interphase caused by mild replication stress (RS). Contrary to this proposal, we find that cells exposed to mild RS in fact maintain continued DNA replication throughout G2 and during G2-M transition in RAD51- and RAD52-dependent manners. Persistent DNA synthesis is necessary to resolve replication intermediates accumulated in G2 and disengage an ATR-imposed block to mitotic entry. Because of its continual nature, DNA synthesis at very late replication sites can overlap with chromosome condensation, generating the phenomenon of mitotic DNA synthesis. Unexpectedly, we find that the commonly used CDK1 inhibitor RO3306 interferes with replication to preclude detection of G2 DNA synthesis, leading to the impression of a mitosis-driven response. Our study reveals the importance of persistent DNA replication and checkpoint control to lessen the risk for severe genome under-replication under mild RS.


Assuntos
Replicação do DNA , Mitose , DNA
3.
Wellcome Open Res ; 7: 241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37351368

RESUMO

Single-molecule localisation microscopy (SMLM) uses software to extract super-resolved positions from microscope images of fluorescent molecules. These localisations can then be used to render super-resolution images or analysed to extract information about molecular behaviour. The GDSC SMLM software provides a set of tools for analysing SMLM data in a single cross-platform environment. The software identifies fluorescent molecules in raw microscope images and localises their positions using stages of spot detection, spot fitting and spot rejection. The resulting localisation data set can then be visualised, cropped and filtered. A suite of downstream analysis tools enable the user to perform single-particle tracking, cluster analysis and drift correction. In addition, GDSC SMLM also provides utility tools that enable modelling of EM-CCD and sCMOS cameras as well as point spread functions (PSFs) for data simulation. The software is written in Java and runs as a collection of plugins for the ImageJ software.

4.
Elife ; 102021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33860765

RESUMO

The essential Smc5/6 complex is required in response to replication stress and is best known for ensuring the fidelity of homologous recombination. Using single-molecule tracking in live fission yeast to investigate Smc5/6 chromatin association, we show that Smc5/6 is chromatin associated in unchallenged cells and this depends on the non-SMC protein Nse6. We define a minimum of two Nse6-dependent sub-pathways, one of which requires the BRCT-domain protein Brc1. Using defined mutants in genes encoding the core Smc5/6 complex subunits, we show that the Nse3 double-stranded DNA binding activity and the arginine fingers of the two Smc5/6 ATPase binding sites are critical for chromatin association. Interestingly, disrupting the single-stranded DNA (ssDNA) binding activity at the hinge region does not prevent chromatin association but leads to elevated levels of gross chromosomal rearrangements during replication restart. This is consistent with a downstream function for ssDNA binding in regulating homologous recombination.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Imagem Individual de Molécula
5.
Cell Rep ; 31(8): 107681, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32460023

RESUMO

Centrosome separation in late G2/ early prophase requires precise spatial coordination that is determined by a balance of forces promoting and antagonizing separation. The major effector of centrosome separation is the kinesin Eg5. However, the identity and regulation of Eg5-antagonizing forces is less well characterized. By manipulating candidate components, we find that centrosome separation is reversible and that separated centrosomes congress toward a central position underneath the flat nucleus. This positioning mechanism requires microtubule polymerization, as well as actin polymerization. We identify perinuclear actin structures that form in late G2/early prophase and interact with microtubules emanating from the centrosomes. Disrupting these structures by breaking the interactions of the linker of nucleoskeleton and cytoskeleton (LINC) complex with perinuclear actin filaments abrogates this centrosome positioning mechanism and causes an increase in subsequent chromosome segregation errors. Our results demonstrate how geometrical cues from the cell nucleus coordinate the orientation of the emanating spindle poles before nuclear envelope breakdown.


Assuntos
Actinas/metabolismo , Centrossomo/metabolismo , Segregação de Cromossomos/genética , Prófase/genética , Humanos
6.
Nat Commun ; 10(1): 2861, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253795

RESUMO

Centromeres provide a pivotal function for faithful chromosome segregation. They serve as a foundation for the assembly of the kinetochore complex and spindle connection, which is essential for chromosome biorientation. Cells lacking Polo-like kinase 1 (PLK1) activity suffer severe chromosome alignment defects, which is believed primarily due to unstable kinetochore-microtubule attachment. Here, we reveal a previously undescribed mechanism named 'centromere disintegration' that drives chromosome misalignment in PLK1-inactivated cells. We find that PLK1 inhibition does not necessarily compromise metaphase establishment, but instead its maintenance. We demonstrate that this is caused by unlawful unwinding of DNA by BLM helicase at a specific centromere domain underneath kinetochores. Under bipolar spindle pulling, the distorted centromeres are promptly decompacted into DNA threadlike molecules, leading to centromere rupture and whole-chromosome arm splitting. Consequently, chromosome alignment collapses. Our study unveils an unexpected role of PLK1 as a chromosome guardian to maintain centromere integrity for chromosome biorientation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/fisiologia , Linhagem Celular , Pareamento Cromossômico/fisiologia , Humanos , Cinetocoros , Interferência de RNA , Timidina/farmacologia , Quinase 1 Polo-Like
7.
Nat Methods ; 16(6): 561, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31097821

RESUMO

In the version of this paper originally published, Figure 4a contained errors that were introduced during typesetting. The bottom 11° ThunderSTORM image is an xz view but was incorrectly labeled as xy, and the low x-axis value in the four line profiles was incorrectly set as -60 instead of -50. These errors have been corrected in the PDF and HTML versions of the paper.

8.
Nat Methods ; 16(5): 387-395, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962624

RESUMO

With the widespread uptake of two-dimensional (2D) and three-dimensional (3D) single-molecule localization microscopy (SMLM), a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort, we designed a competition to extensively characterize and rank the performance of 2D and 3D SMLM software packages. We generated realistic simulated datasets for popular imaging modalities-2D, astigmatic 3D, biplane 3D and double-helix 3D-and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D SMLM software and provides a holistic view of how the latest 2D and 3D SMLM packages perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against the current state of the art, and provides insight into the current limits of the field.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Individual de Molécula/métodos , Software , Algoritmos
9.
Nat Genet ; 47(7): 727-735, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25985139

RESUMO

Crossover recombination reshuffles genes and prevents errors in segregation that lead to extra or missing chromosomes (aneuploidy) in human eggs, a major cause of pregnancy failure and congenital disorders. Here we generate genome-wide maps of crossovers and chromosome segregation patterns by recovering all three products of single female meioses. Genotyping >4 million informative SNPs from 23 complete meioses allowed us to map 2,032 maternal and 1,342 paternal crossovers and to infer the segregation patterns of 529 chromosome pairs. We uncover a new reverse chromosome segregation pattern in which both homologs separate their sister chromatids at meiosis I; detect selection for higher recombination rates in the female germ line by the elimination of aneuploid embryos; and report chromosomal drive against non-recombinant chromatids at meiosis II. Collectively, our findings show that recombination not only affects homolog segregation at meiosis I but also the fate of sister chromatids at meiosis II.


Assuntos
Segregação de Cromossomos , Recombinação Genética , Células Cultivadas , Mapeamento Cromossômico , Troca Genética , Feminino , Genoma Humano , Humanos , Meiose , Oócitos/fisiologia , Corpos Polares , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
PLoS One ; 10(4): e0125438, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884495

RESUMO

Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in) to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Animais , Autoantígenos/análise , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteína Centromérica A , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias , Imageamento Tridimensional/métodos , Camundongos , Imagem Molecular/instrumentação , Proteínas de Schizosaccharomyces pombe/análise , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
PLoS One ; 9(12): e114749, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478967

RESUMO

Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ.


Assuntos
Algoritmos , Proteínas/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Proteínas/metabolismo , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Software , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Nucleic Acids Res ; 42(19): e146, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25106872

RESUMO

Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds.


Assuntos
Proteínas de Ligação a DNA/análise , Microscopia de Fluorescência/métodos , Ciclo Celular , Replicação do DNA , Difusão , Componente 4 do Complexo de Manutenção de Minicromossomo/análise , Antígeno Nuclear de Célula em Proliferação/análise , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/análise
13.
Mol Cell ; 55(5): 723-32, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25066234

RESUMO

Actively transcribed regions of the genome are vulnerable to genomic instability. Recently, it was discovered that transcription is repressed in response to neighboring DNA double-strand breaks (DSBs). It is not known whether a failure to silence transcription flanking DSBs has any impact on DNA repair efficiency or whether chromatin remodelers contribute to the process. Here, we show that the PBAF remodeling complex is important for DSB-induced transcriptional silencing and promotes repair of a subset of DNA DSBs at early time points, which can be rescued by inhibiting transcription globally. An ATM phosphorylation site on BAF180, a PBAF subunit, is required for both processes. Furthermore, we find that subunits of the PRC1 and PRC2 polycomb group complexes are similarly required for DSB-induced silencing and promoting repair. Cancer-associated BAF180 mutants are unable to restore these functions, suggesting PBAF's role in repressing transcription near DSBs may contribute to its tumor suppressor activity.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Quebras de DNA , Reparo do DNA , Regulação da Expressão Gênica , Fatores de Transcrição/fisiologia , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ubiquitinação
14.
PLoS Genet ; 9(12): e1004071, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385939

RESUMO

During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4(Eme1). Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe.


Assuntos
Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Recombinação Homóloga/genética , Meiose/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Centrômero , Proteínas Cromossômicas não Histona/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Complexos Multiproteicos/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
15.
Proteins ; 70(3): 611-25, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17876813

RESUMO

Structural and functional annotation of the large and growing database of genomic sequences is a major problem in modern biology. Protein structure prediction by detecting remote homology to known structures is a well-established and successful annotation technique. However, the broad spectrum of evolutionary change that accompanies the divergence of close homologues to become remote homologues cannot easily be captured with a single algorithm. Recent advances to tackle this problem have involved the use of multiple predictive algorithms available on the Internet. Here we demonstrate how such ensembles of predictors can be designed in-house under controlled conditions and permit significant improvements in recognition by using a concept taken from protein loop energetics and applying it to the general problem of 3D clustering. We have developed a stringent test that simulates the situation where a protein sequence of interest is submitted to multiple different algorithms and not one of these algorithms can make a confident (95%) correct assignment. A method of meta-server prediction (Phyre) that exploits the benefits of a controlled environment for the component methods was implemented. At 95% precision or higher, Phyre identified 64.0% of all correct homologous query-template relationships, and 84.0% of the individual test query proteins could be accurately annotated. In comparison to the improvement that the single best fold recognition algorithm (according to training) has over PSI-Blast, this represents a 29.6% increase in the number of correct homologous query-template relationships, and a 46.2% increase in the number of accurately annotated queries. It has been well recognised in fold prediction, other bioinformatics applications, and in many other areas, that ensemble predictions generally are superior in accuracy to any of the component individual methods. However there is a paucity of information as to why the ensemble methods are superior and indeed this has never been systematically addressed in fold recognition. Here we show that the source of ensemble power stems from noise reduction in filtering out false positive matches. The results indicate greater coverage of sequence space and improved model quality, which can consequently lead to a reduction in the experimental workload of structural genomics initiatives.


Assuntos
Algoritmos , Conformação Proteica , Análise de Sequência de Proteína , Software , Animais , Bases de Dados de Proteínas , Humanos , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA