Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 801, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532778

RESUMO

Molybdenum (Mo) as essential micronutrient for plants, acts as active component of molybdenum cofactor (Moco). Core metabolic processes like nitrate assimilation or abscisic-acid biosynthesis rely on Moco-dependent enzymes. Although a family of molybdate transport proteins (MOT1) is known to date in Arabidopsis, molybdate homeostasis remained unclear. Here we report a second family of molybdate transporters (MOT2) playing key roles in molybdate distribution and usage. KO phenotype-analyses, cellular and organ-specific localization, and connection to Moco-biosynthesis enzymes via protein-protein interaction suggest involvement in cellular import of molybdate in leaves and reproductive organs. Furthermore, we detected a glutathione-molybdate complex, which reveals how vacuolar storage is maintained. A putative Golgi S-adenosyl-methionine transport function was reported recently for the MOT2-family. Here, we propose a moonlighting function, since clear evidence of molybdate transport was found in a yeast-system. Our characterization of the MOT2-family and the detection of a glutathione-molybdate complex unveil the plant-wide way of molybdate.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Molibdênio/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pteridinas , Homeostase
2.
Nat Chem ; 13(8): 758-765, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183818

RESUMO

The molybdenum cofactor (Moco) is found in the active site of numerous important enzymes that are critical to biological processes. The bidentate ligand that chelates molybdenum in Moco is the pyranopterin dithiolene (molybdopterin, MPT). However, neither the mechanism of molybdate insertion into MPT nor the structure of Moco prior to its insertion into pyranopterin molybdenum enzymes is known. Here, we report this final maturation step, where adenylated MPT (MPT-AMP) and molybdate are the substrates. X-ray crystallography of the Arabidopsis thaliana Mo-insertase variant Cnx1E S269D D274S identified adenylated Moco (Moco-AMP) as an unexpected intermediate in this reaction sequence. X-ray absorption spectroscopy revealed the first coordination sphere geometry of Moco trapped in the Cnx1E active site. We have used this structural information to deduce a mechanism for molybdate insertion into MPT-AMP. Given their high degree of structural and sequence similarity, we suggest that this mechanism is employed by all eukaryotic Mo-insertases.


Assuntos
Proteínas de Arabidopsis , Coenzimas , Molibdênio , Oxirredutases , Pteridinas , Monofosfato de Adenosina/análogos & derivados , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Coenzimas/química , Cristalografia por Raios X , Modelos Químicos , Molibdênio/química , Cofatores de Molibdênio , Oxirredutases/química , Pteridinas/química
3.
Genes Dev ; 35(3-4): 212-217, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446569

RESUMO

The molybdenum cofactor (Moco) is a 520-Da prosthetic group that is synthesized in all domains of life. In animals, four oxidases (among them sulfite oxidase) use Moco as a prosthetic group. Moco is essential in animals; humans with mutations in genes that encode Moco biosynthetic enzymes display lethal neurological and developmental defects. Moco supplementation seems a logical therapy; however, the instability of Moco has precluded biochemical and cell biological studies of Moco transport and bioavailability. The nematode Caenorhabditis elegans can take up Moco from its bacterial diet and transport it to cells and tissues that express Moco-requiring enzymes, suggesting a system for Moco uptake and distribution. Here we show that protein-bound Moco is the stable, bioavailable species of Moco taken up by C. elegans from its diet and is an effective dietary supplement, rescuing a Celegans model of Moco deficiency. We demonstrate that diverse Moco:protein complexes are stable and bioavailable, suggesting a new strategy for the production and delivery of therapeutically active Moco to treat human Moco deficiency.


Assuntos
Caenorhabditis elegans/metabolismo , Coenzimas/administração & dosagem , Erros Inatos do Metabolismo dos Metais/terapia , Metaloproteínas/administração & dosagem , Pteridinas/administração & dosagem , Animais , Bactérias/metabolismo , Transporte Biológico , Coenzimas/deficiência , Coenzimas/farmacocinética , Humanos , Metaloproteínas/deficiência , Metaloproteínas/farmacocinética , Cofatores de Molibdênio , Ligação Proteica , Pteridinas/farmacocinética
4.
Biosci Rep ; 40(11)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33084886

RESUMO

The molybdenum cofactor (Moco) is a redox active prosthetic group found in the active site of Moco-dependent enzymes (Mo-enzymes). As Moco and its intermediates are highly sensitive towards oxidative damage, these are believed to be permanently protein bound during synthesis and upon maturation. As a major component of the plant Moco transfer and storage system, proteins have been identified that are capable of Moco binding and release but do not possess Moco-dependent enzymatic activities. The first protein found to possess these properties was the Moco carrier protein (MCP) from the green alga Chlamydomonas reinhardtii. Here, we describe the identification and biochemical characterisation of the Volvox carteri (V. carteri) MCP and, for the first time, employ a comparative analysis to elucidate the principles behind MCP Moco binding. Doing so identified a sequence region of low homology amongst the existing MCPs, which we showed to be essential for Moco binding to V. carteri MCP.


Assuntos
Proteínas de Transporte/metabolismo , Coenzimas/metabolismo , Metaloproteínas/metabolismo , Proteínas de Plantas/metabolismo , Pteridinas/metabolismo , Volvox/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Coenzimas/química , Coenzimas/genética , Metaloproteínas/química , Metaloproteínas/genética , Modelos Moleculares , Cofatores de Molibdênio , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pteridinas/química , Relação Estrutura-Atividade , Volvox/genética
5.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 9): 453-463, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880594

RESUMO

The molybdenum cofactor (Moco) is the prosthetic group of all molybdenum-dependent enzymes except for nitrogenase. The multistep biosynthesis pathway of Moco and its function in molybdenum-dependent enzymes are already well understood. The mechanisms of Moco transfer, storage and insertion, on the other hand, are not. In the cell, Moco is usually not found in its free form and remains bound to proteins because of its sensitivity to oxidation. The green alga Chlamydomonas reinhardtii harbors a Moco carrier protein (MCP) that binds and protects Moco but is devoid of enzymatic function. It has been speculated that this MCP acts as a means of Moco storage and transport. Here, the search for potential MCPs has been extended to the prokaryotes, and many MCPs were found in cyanobacteria. A putative MCP from Rippkaea orientalis (RoMCP) was selected for recombinant production, crystallization and structure determination. RoMCP has a Rossmann-fold topology that is characteristic of nucleotide-binding proteins and a homotetrameric quaternary structure similar to that of the MCP from C. reinhardtii. In each protomer, a positively charged crevice was identified that accommodates up to three chloride ions, hinting at a potential Moco-binding site. Computational docking experiments supported this notion and gave an impression of the RoMCP-Moco complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Cloretos/química , Coenzimas/química , Cianobactérias/química , Metaloproteínas/química , Pteridinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloretos/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Cianobactérias/genética , Cianobactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Simulação de Acoplamento Molecular , Cofatores de Molibdênio , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Pteridinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
6.
Microorganisms ; 8(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272807

RESUMO

Molybdenum cofactor (Moco) is the active site prosthetic group found in all Moco dependent enzymes, except for nitrogenase. Mo-enzymes are crucial for viability throughout all kingdoms of life as they catalyze a diverse set of two electron transfer reactions. The highly conserved Moco biosynthesis pathway consists of four different steps in which guanosine triphosphate is converted into cyclic pyranopterin monophosphate, molybdopterin (MPT), and subsequently adenylated MPT and Moco. Although the enzymes and mechanisms involved in these steps are well characterized, the regulation of eukaryotic Moco biosynthesis is not. Within this work, we described the regulation of Moco biosynthesis in the filamentous fungus Neurospora crassa, which revealed the first step of the multi-step pathway to be under transcriptional control. We found, that upon the induction of high cellular Moco demand a single transcript variant of the nit-7 gene is increasingly formed pointing towards, that essentially the encoded enzyme NIT7-A is the key player for Moco biosynthesis activity in Neurospora.

7.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31860061

RESUMO

Molybdenum insertases (Mo-insertases) catalyze the final step of molybdenum cofactor (Moco) biosynthesis, an evolutionary old and highly conserved multi-step pathway. In the first step of the pathway, GTP serves as substrate for the formation of cyclic pyranopterin monophosphate, which is subsequently converted into molybdopterin (MPT) in the second pathway step. In the following synthesis steps, MPT is adenylated yielding MPT-AMP that is subsequently used as substrate for enzyme catalyzed molybdate insertion. Molybdate insertion and MPT-AMP hydrolysis are catalyzed by the Mo-insertase E-domain. Earlier work reported a highly conserved aspartate residue to be essential for Mo-insertase functionality. In this work, we confirmed the mechanistic relevance of this residue for the Arabidopsis thaliana Mo-insertase Cnx1E. We found that the conservative substitution of Cnx1E residue Asp274 by Glu (D274E) leads to an arrest of MPT-AMP hydrolysis and hence to the accumulation of MPT-AMP. We further showed that the MPT-AMP accumulation goes in hand with the accumulation of molybdate. By crystallization and structure determination of the Cnx1E variant D274E, we identified the potential reason for the missing hydrolysis activity in the disorder of the region spanning amino acids 269 to 274. We reasoned that this is caused by the inability of a glutamate in position 274 to coordinate the octahedral Mg2+-water complex in the Cnx1E active site.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Coenzimas/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Catálise , Domínio Catalítico , Hidrólise , Molibdênio/metabolismo , Cofatores de Molibdênio , Compostos Organofosforados/metabolismo , Pterinas/metabolismo
8.
Nat Chem Biol ; 15(5): 429-430, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30911176
9.
Biochem J ; 475(10): 1739-1753, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29717023

RESUMO

The molybdenum cofactor (Moco) is a redox-active prosthetic group found in the active site of Moco-dependent enzymes, which are vitally important for life. Moco biosynthesis involves several enzymes that catalyze the subsequent conversion of GTP into cyclic pyranopterin monophosphate (cPMP), molybdopterin (MPT), adenylated MPT (MPT-AMP), and finally Moco. While the underlying principles of cPMP, MPT, and MPT-AMP formation are well understood, the molybdenum insertase (Mo-insertase)-catalyzed final Moco maturation step is not. In the present study, we analyzed high-resolution X-ray datasets of the plant Mo-insertase Cnx1E that revealed two molybdate-binding sites within the active site, hence improving the current view on Cnx1E functionality. The presence of molybdate anions in either of these sites is tied to a distinctive backbone conformation, which we suggest to be essential for Mo-insertase molybdate selectivity and insertion efficiency.


Assuntos
Coenzimas/metabolismo , Eucariotos/enzimologia , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Pteridinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Coenzimas/química , Metaloproteínas/química , Metaloproteínas/genética , Molibdênio/química , Cofatores de Molibdênio , Mutação , Conformação Proteica , Pteridinas/química , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA