Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Hematol Oncol ; 17(1): 8, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331849

RESUMO

BACKGROUND: It remains challenging to obtain positive outcomes with chimeric antigen receptor (CAR)-engineered cell therapies in solid malignancies, like colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC). A major obstacle is the lack of targetable surface antigens that are not shared by healthy tissues. CD70 emerges as interesting target, due to its stringent expression pattern in healthy tissue and its apparent role in tumor progression in a considerable amount of malignancies. Moreover, CD70 is also expressed on cancer-associated fibroblasts (CAFs), another roadblock for treatment efficacy in CRC and PDAC. We explored the therapeutic potential of CD70 as target for CAR natural killer (NK) cell therapy in CRC, PDAC, focusing on tumor cells and CAFs, and lymphoma. METHODS: RNA-seq data and immunohistochemical analysis of patient samples were used to explore CD70 expression in CRC and PDAC patients. In addition, CD70-targeting CAR NK cells were developed to assess cytotoxic activity against CD70+ tumor cells and CAFs, and the effect of cytokine stimulation on their efficacy was evaluated. The in vitro functionality of CD70-CAR NK cells was investigated against a panel of tumor and CAF cell lines with varying CD70 expression. Lymphoma-bearing mice were used to validate in vivo potency of CD70-CAR NK cells. Lastly, to consider patient variability, CD70-CAR NK cells were tested on patient-derived organoids containing CAFs. RESULTS: In this study, we identified CD70 as a target for tumor cells and CAFs in CRC and PDAC patients. Functional evaluation of CD70-directed CAR NK cells indicated that IL-15 stimulation is essential to obtain effective elimination of CD70+ tumor cells and CAFs, and to improve tumor burden and survival of mice bearing CD70+ tumors. Mechanistically, IL-15 stimulation resulted in improved potency of CD70-CAR NK cells by upregulating CAR expression and increasing secretion of pro-inflammatory cytokines, in a mainly autocrine or intracellular manner. CONCLUSIONS: We disclose CD70 as an attractive target both in hematological and solid tumors. IL-15 armored CAR NK cells act as potent effectors to eliminate these CD70+ cells. They can target both tumor cells and CAFs in patients with CRC and PDAC, and potentially other desmoplastic solid tumors.


Assuntos
Fibroblastos Associados a Câncer , Linfoma , Humanos , Animais , Camundongos , Citotoxicidade Imunológica , Interleucina-15/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Imunoterapia Adotiva/métodos , Linfoma/metabolismo , Citocinas/metabolismo , Ligante CD27
2.
NPJ Precis Oncol ; 7(1): 128, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066116

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution. We leveraged a fully characterized PDAC organoid panel (N = 8) and matched our artificial intelligence-driven, live-cell organoid image analysis with retrospective clinical patient response. In line with the clinical outcomes, we identified patient-specific sensitivities to the standard of care therapies (gemcitabine-paclitaxel and FOLFIRINOX) using a growth rate-based and normalized drug response metric. Moreover, the single-organoid analysis was able to detect resistant as well as invasive PDAC organoid clones, which was orchestrates on a patient, therapy, drug, concentration and time-specific level. Furthermore, our in vitro organoid analysis indicated a correlation with the matched patient progression-free survival (PFS) compared to the current, conventional drug response readouts. This work not only provides valuable insights on the response complexity in PDAC, but it also highlights the potential applications (extendable to other tumor types) and clinical translatability of our approach in drug discovery and the emerging era of personalized medicine.

3.
Antioxidants (Basel) ; 12(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978917

RESUMO

Auranofin (AF) is a potent, off-patent thioredoxin reductase (TrxR) inhibitor that efficiently targets cancer via reactive oxygen species (ROS)- and DNA damage-mediated cell death. The goal of this study is to enhance the efficacy of AF as a cancer treatment by combining it with the poly(ADP-ribose) polymerase-1 (PARP) inhibitor olaparib (referred to as 'aurola'). Firstly, we investigated whether mutant p53 can sensitize non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) cancer cells to AF and olaparib treatment in p53 knock-in and knock-out models with varying p53 protein expression levels. Secondly, we determined the therapeutic range for synergistic cytotoxicity between AF and olaparib and elucidated the underlying molecular cell death mechanisms. Lastly, we evaluated the effectiveness of the combination strategy in a murine 344SQ 3D spheroid and syngeneic in vivo lung cancer model. We demonstrated that high concentrations of AF and olaparib synergistically induced cytotoxicity in NSCLC and PDAC cell lines with low levels of mutant p53 protein that were initially more resistant to AF. The aurola combination also led to the highest accumulation of ROS, which resulted in ROS-dependent cytotoxicity of mutant p53 NSCLC cells through distinct types of cell death, including caspase-3/7-dependent apoptosis, inhibited by Z-VAD-FMK, and lipid peroxidation-dependent ferroptosis, inhibited by ferrostatin-1 and alpha-tocopherol. High concentrations of both compounds were also needed to obtain a synergistic cytotoxic effect in 3D spheroids of the murine lung adenocarcinoma cell line 344SQ, which was interestingly absent in 2D. This cell line was used in a syngeneic mouse model in which the oral administration of aurola significantly delayed the growth of mutant p53 344SQ tumors in 129S2/SvPasCrl mice, while either agent alone had no effect. In addition, RNA sequencing results revealed that AF- and aurola-treated 344SQ tumors were negatively enriched for immune-related gene sets, which is in accordance with AF's anti-inflammatory function as an anti-rheumatic drug. Only 344SQ tumors treated with aurola showed the downregulation of genes related to the cell cycle, potentially explaining the growth inhibitory effect of aurola since no apoptosis-related gene sets were enriched. Overall, this novel combination strategy of oxidative stress induction (AF) with PARP inhibition (olaparib) could be a promising treatment for mutant p53 cancers, although high concentrations of both compounds need to be reached to obtain a substantial cytotoxic effect.

4.
Oncoimmunology ; 12(1): 2192100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970072

RESUMO

Despite the recent emergence of immune checkpoint inhibitors, clinical outcomes of metastatic NSCLC patients remain poor, pointing out the unmet need to develop novel therapies to enhance the anti-tumor immune response in NSCLC. In this regard, aberrant expression of the immune checkpoint molecule CD70 has been reported on many cancer types, including NSCLC. In this study, the cytotoxic and immune stimulatory potential of an antibody-based anti-CD70 (aCD70) therapy was explored as single agent and in combination with docetaxel and cisplatin in NSCLC in vitro and in vivo. Anti-CD70 therapy resulted in NK-mediated killing of NSCLC cells and increased production of pro-inflammatory cytokines by NK cells in vitro. The combination of chemotherapy and anti-CD70 therapy further enhanced NSCLC cell killing. Moreover, in vivo findings showed that the sequential treatment of chemo-immunotherapy resulted in a significant improved survival and delayed tumor growth compared to single agents in Lewis Lung carcinoma-bearing mice. The immunogenic potential of the chemotherapeutic regimen was further highlighted by increased numbers of dendritic cells in the tumor-draining lymph nodes in these tumor-bearing mice after treatment. The sequential combination therapy resulted in enhanced intratumoral infiltration of both T and NK cells, as well as an increase in the ratio of CD8+ T cells over Tregs. The superior effect of the sequential combination therapy on survival was further confirmed in a NCI-H1975-bearing humanized IL15-NSG-CD34+ mouse model. These novel preclinical data demonstrate the potential of combining chemotherapy and aCD70 therapy to enhance anti-tumor immune responses in NSCLC patients.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico
5.
Cancer Drug Resist ; 6(4): 709-728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239393

RESUMO

Aim: Acquired resistance to the targeted agent cetuximab poses a significant challenge in finding effective anti-cancer treatments for head and neck squamous cell carcinoma (HNSCC). To accurately study novel combination treatments, suitable preclinical mouse models for cetuximab resistance are key yet currently limited. This study aimed to optimize an acquired cetuximab-resistant mouse model, with preservation of the innate immunity, ensuring intact antibody-dependent cellular cytotoxicity (ADCC) functionality. Methods: Cetuximab-sensitive and acquired-resistant HNSCC cell lines, generated in vitro, were subcutaneously engrafted in Rag2 knock-out (KO), BALB/c Nude and CB17 Scid mice with/without Matrigel or Geltrex. Once tumor growth was established, mice were intraperitoneally injected twice a week with cetuximab for a maximum of 3 weeks. In addition, immunohistochemistry was used to evaluate the tumor and its microenvironment. Results: Despite several adjustments in cell number, cell lines and the addition of Matrigel, Rag2 KO and BALB/C Nude mice proved to be unsuitable for xenografting our HNSCC cell lines. Durable tumor growth of resistant SC263-R cells could be induced in CB17 Scid mice. However, these cells had lost their resistance phenotype in vivo. Immunohistochemistry revealed a high infiltration of macrophages in cetuximab-treated SC263-R tumors. FaDu-S and FaDu-R cells successfully engrafted into CB17 Scid mice and maintained their sensitivity/resistance to cetuximab. Conclusion: We have established in vivo HNSCC mouse models with intact ADCC functionality for cetuximab resistance and sensitivity using the FaDu-R and FaDu-S cell lines, respectively. These models serve as valuable tools for investigating cetuximab resistance mechanisms and exploring novel drug combination strategies.

6.
Pharmaceutics ; 14(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559255

RESUMO

The antineoplastic activity of the thioredoxin reductase 1 (TrxR) inhibitor, auranofin (AF), has already been investigated in various cancer mouse models as a single drug, or in combination with other molecules. However, there are inconsistencies in the literature on the solvent, dose and administration route of AF treatment in vivo. Therefore, we investigated the solvent and administration route of AF in a syngeneic SB28 glioblastoma (GBM) C57BL/6J and a 344SQ non-small cell lung cancer 129S2/SvPasCrl (129) mouse model. Compared to daily intraperitoneal injections and subcutaneous delivery of AF via osmotic minipumps, oral gavage for 14 days was the most suitable administration route for high doses of AF (10-15 mg/kg) in both mouse models, showing no measurable weight loss or signs of toxicity. A solvent comprising 50% DMSO, 40% PEG300 and 10% ethanol improved the solubility of AF for oral administration in mice. In addition, we confirmed that AF was a potent TrxR inhibitor in SB28 GBM tumors at high doses. Taken together, our results and results in the literature indicate the therapeutic value of AF in several in vivo cancer models, and provide relevant information about AF's optimal administration route and solvent in two syngeneic cancer mouse models.

7.
Front Immunol ; 13: 1001161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268020

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that retain their poor prognosis despite recent advances in their standard of care. As the involvement of the immune system against HNSCC development is well-recognized, characterization of the immune signature and the complex interplay between HNSCC and the immune system could lead to the identification of novel therapeutic targets that are required now more than ever. In this study, we investigated RNA sequencing data of 530 HNSCC patients from The Cancer Genome Atlas (TCGA) for which the immune composition (CIBERSORT) was defined by the relative fractions of 10 immune-cell types and expression data of 45 immune checkpoint ligands were quantified. This initial investigation was followed by immunohistochemical (IHC) staining for a curated selection of immune cell types and checkpoint ligands markers in tissue samples of 50 advanced stage HNSCC patients. The outcome of both analyses was correlated with clinicopathological parameters and patient overall survival. Our results indicated that HNSCC tumors are in close contact with both cytotoxic and immunosuppressive immune cells. TCGA data showed prognostic relevance of dendritic cells, M2 macrophages and neutrophils, while IHC analysis associated T cells and natural killer cells with better/worse prognostic outcome. HNSCC tumors in our TCGA cohort showed differential RNA over- and underexpression of 28 immune inhibitory and activating checkpoint ligands compared to healthy tissue. Of these, CD73, CD276 and CD155 gene expression were negative prognostic factors, while CD40L, CEACAM1 and Gal-9 expression were associated with significantly better outcomes. Our IHC analyses confirmed the relevance of CD155 and CD276 protein expression, and in addition PD-L1 expression, as independent negative prognostic factors, while HLA-E overexpression was associated with better outcomes. Lastly, the co-presence of both (i) CD155 positive cells with intratumoral NK cells; and (ii) PD-L1 expression with regulatory T cell infiltration may hold prognostic value for these cohorts. Based on our data, we propose that CD155 and CD276 are promising novel targets for HNSCC, possibly in combination with the current standard of care or novel immunotherapies to come.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Antígeno B7-H1/metabolismo , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Ligante de CD40 , Ligantes , RNA , Antígenos B7
8.
Cancers (Basel) ; 14(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36077610

RESUMO

In this study, we aimed to study the expression of SARS-CoV-2-related surface proteins in non-small-cell lung cancer (NSCLC) cells and identify clinicopathological characteristics that are related to increased membranous (m)ACE2 protein expression and soluble (s)ACE2 levels, with a particular focus on standard of care (SOC) therapies. ACE2 (n = 107), TMPRSS2, and FURIN (n = 38) protein expression was determined by immunohistochemical (IHC) analysis in NSCLC patients. sACE2 levels (n = 64) were determined in the serum of lung cancer patients collected before, during, or after treatment with SOC therapies. Finally, the TCGA lung adenocarcinoma (LUAD) database was consulted to study the expression of ACE2 in EGFR- and KRAS-mutant samples and ACE2 expression was correlated with EGFR/HER, RAS, BRAF, ROS1, ALK, and MET mRNA expression. Membranous (m)ACE2 was found to be co-expressed with mFURIN and/or mTMPRSS2 in 16% of the NSCLC samples and limited to the adenocarcinoma subtype. TMPRSS2 showed predominantly atypical cytoplasmic expression. mACE2 and sACE2 were more frequently expressed in mutant EGFR patients, but not mutant-KRAS patients. A significant difference was observed in sACE2 for patients treated with targeted therapies, but not for chemo- and immunotherapy. In the TCGA LUAD cohort, ACE2 expression was significantly higher in EGFR-mutant patients and significantly lower in KRAS-mutant patients. Finally, ACE2 expression was positively correlated with ERBB2-4 and ROS1 expression and inversely correlated with KRAS, NRAS, HRAS, and MET mRNA expression. We identified a role for EGFR pathway activation in the expression of mACE2 in NSCLC cells, associated with increased sACE2 levels in patients. Therefore, it is of great interest to study SARS-CoV-2-infected EGFR-mutated NSCLC patients in greater depth in order to obtain a better understanding of how mACE2, sACE2, and SOC TKIs can affect the course of COVID-19.

9.
Transl Lung Cancer Res ; 11(8): 1526-1539, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36090630

RESUMO

Background: Cure and long-term survival for non-small cell lung cancer (NSCLC) remains hard to achieve. Cellular senescence, an emerging hallmark of cancer, is considered as an endogenous tumor suppressor mechanism. However, senescent cancer cells can paradoxically affect the surrounding tumor microenvironment (TME), ultimately leading to cancer relapse and metastasis. As such, the role of cellular senescence in cancer is highly controversial. Methods: In 155 formalin-fixed paraffin-embedded (FFPE) samples from surgically resected NSCLC patients with pathological tumor-node-metastasis (pTNM) stages I-IV (8th edition), cellular senescence was assessed using a combination of four immunohistochemical senescence markers, i.e., lipofuscin, p16INK4a, p21WAF1/Cip1 and Ki67, and correlated to clinicopathological parameters and outcomes, including overall survival (OS) and disease-free survival (DFS). Results: A tumoral senescence signature (SS) was present in 48 out of 155 NSCLC patients, but did not correlate to any clinicopathological parameter, except for p53 mutation status. In a histologically homogenous patient cohort of 100 patients who fulfilled the following criteria: (I) one type of histology, i.e., adenocarcinoma, (II) without known epidermal growth factor receptor (EGFR) mutation, (III) curative (R0) resection and (IV) no neoadjuvant systemic therapy or radiotherapy, the median OS and DFS for patients with a tumoral SS (n=30, 30.0%) compared to patients without a tumoral SS (n=70, 70.0%) was 53 versus 141 months (P=0.005) and 45 versus 55 months (P=0.25), respectively. In multiple Cox proportional hazards (Cox PH) model analysis correcting for age, pTNM stage I-III and adjuvant therapy, a tumoral SS remained a significant prognostic factor for OS (HR =2.03; P=0.014). Conclusions: The presence of a tumoral SS particularly based on high p16INK4a expression significantly affects OS in NSCLC adenocarcinoma. In this light, adjuvant senolytic therapy could be an interesting strategy for NSCLC patients harboring a tumoral SS, ultimately to improve survival of these patients.

10.
Nanomedicine ; 40: 102485, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748959

RESUMO

There is a continued need for effective hemostatic agents that are safe for neurosurgical use. Self-assembling peptide hydrogels have been suggested as novel hemostatic agents. They offer some advantages for neurosurgical hemostasis (e.g., transparency), but their efficacy and safety for neurosurgery have not been established. In this paper, the efficacy and safety of two self-assembling peptides, RADA16 and IEIK13, are explored for hemostasis of oozing bleeding on the rat cerebral cortex (n = 56). Chronic safety was evaluated by neuropathological evaluation at one, four, and twelve weeks after craniotomy (n = 32). An inactive control and oxidized cellulose served as comparators. Mean time-to-hemostasis was significantly shorter for RADA16 and IEIK13 compared to controls, while safety evaluation yielded similar results. Histopathological response consisted primarily of macrophage infiltration at the lesion site in all groups. This study confirms the hemostatic potential and safety of RADA16 and IEIK13 for hemostasis in the rat brain.


Assuntos
Hemostasia , Hemostáticos , Animais , Hemorragia , Hemostáticos/farmacologia , Hidrogéis/farmacologia , Peptídeos/farmacologia , Ratos
11.
Cells ; 10(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34831159

RESUMO

Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.


Assuntos
Apoptose , Auranofina/farmacologia , Glioblastoma/imunologia , Glioblastoma/patologia , Gases em Plasma/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Ferroptose/efeitos dos fármacos , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Cinética , Camundongos Endogâmicos C57BL , Esferoides Celulares/efeitos dos fármacos
12.
Redox Biol ; 42: 101949, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812801

RESUMO

Auranofin (AF) is an FDA-approved antirheumatic drug with anticancer properties that acts as a thioredoxin reductase 1 (TrxR) inhibitor. The exact mechanisms through which AF targets cancer cells remain elusive. To shed light on the mode of action, this study provides an in-depth analysis on the molecular mechanisms and immunogenicity of AF-mediated cytotoxicity in the non-small cell lung cancer (NSCLC) cell line NCI-H1299 (p53 Null) and its two isogenic derivates with mutant p53 R175H or R273H accumulation. TrxR is highly expressed in a panel of 72 NSCLC patients, making it a valid druggable target in NSCLC for AF. The presence of mutant p53 overexpression was identified as an important sensitizer for AF in (isogenic) NSCLC cells as it was correlated with reduced thioredoxin (Trx) levels in vitro. Transcriptome analysis revealed dysregulation of genes involved in oxidative stress response, DNA damage, granzyme A (GZMA) signaling and ferroptosis. Although functionally AF appeared a potent inhibitor of GPX4 in all NCI-H1299 cell lines, the induction of lipid peroxidation and consequently ferroptosis was limited to the p53 R273H expressing cells. In the p53 R175H cells, AF mainly induced large-scale DNA damage and replication stress, leading to the induction of apoptotic cell death rather than ferroptosis. Importantly, all cell death types were immunogenic since the release of danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation occurred irrespective of (mutant) p53 expression. Finally, we show that AF sensitized cancer cells to caspase-independent natural killer cell-mediated killing by downregulation of several key targets of GZMA. Our data provides novel insights on AF as a potent, clinically available, off-patent cancer drug by targeting mutant p53 cancer cells through distinct cell death mechanisms (apoptosis and ferroptosis). In addition, AF improves the innate immune response at both cytostatic (natural killer cell-mediated killing) and cytotoxic concentrations (dendritic cell maturation).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apoptose , Auranofina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína Supressora de Tumor p53/genética
13.
J Med Genet ; 58(11): 778-782, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32900841

RESUMO

BACKGROUND: Although carpal tunnel syndrome (CTS) is the most common form of peripheral entrapment neuropathy, its pathogenesis remains largely unknown. An estimated heritability index of 0.46 and an increased familial occurrence indicate that genetic factors must play a role in the pathogenesis. METHODS AND RESULTS: We report on a family in which CTS occurred in subsequent generations at an unusually young age. Additional clinical features included brachydactyly and short Achilles tendons resulting in toe walking in childhood. Using exome sequencing, we identified a heterozygous variant (c.5009T>G; p.Phe1670Cys) in the fibrillin-2 (FBN2) gene that co-segregated with the phenotype in the family. Functional assays showed that the missense variant impaired integrin-mediated cell adhesion and migration. Moreover, we observed an increased transforming growth factor-ß signalling and fibrosis in the carpal tissues of affected individuals. A variant burden test in a large cohort of patients with CTS revealed a significantly increased frequency of rare (6.7% vs 2.5%-3.4%, p<0.001) and high-impact (6.9% vs 2.7%, p<0.001) FBN2 variants in patient alleles compared with controls. CONCLUSION: The identification of a novel FBN2 variant (p.Phe1670Cys) in a unique family with early onset CTS, together with the observed increased frequency of rare and high-impact FBN2 variants in patients with sporadic CTS, strongly suggest a role of FBN2 in the pathogenesis of CTS.


Assuntos
Síndrome do Túnel Carpal/genética , Fibrilina-2/genética , Tendão do Calcâneo/anormalidades , Estatura/genética , Síndrome do Túnel Carpal/diagnóstico por imagem , Síndrome do Túnel Carpal/etiologia , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem
14.
Cancers (Basel) ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252405

RESUMO

(1) Background: Therapeutic blocking of the interaction between programmed death-1 (PD-1) with its ligand PD-L1, an immune checkpoint, is a promising approach to restore the antitumor immune response. Improved clinical outcomes have been shown in different human cancers, including non-small cell lung cancer (NSCLC). Unfortunately, still a high number of NSCLC patients are treated with immunotherapy without obtaining any clinical benefit, due to the limitations of PD-L1 protein expression as the currently sole predictive biomarker for clinical use; (2) Methods: In this study, we applied mass spectrometry imaging (MSI) to discover new protein biomarkers, and to assess the possible correlation between candidate biomarkers and a positive immunotherapy response by matrix-assisted laser desorption/ionization (MALDI) MSI in 25 formalin-fixed paraffin-embedded (FFPE) pretreatment tumor biopsies (Biobank@UZA); (3) Results: Using MALDI MSI, we revealed that the addition of neutrophil defensin 1, 2 and 3 as pretreatment biomarkers may more accurately predict the outcome of immunotherapy treatment in NSCLC. These results were verified and confirmed with immunohistochemical analyses. In addition, we provide in-vitro evidence of the immune stimulatory effect of neutrophil defensins towards cancer cells; and (4) Conclusions: With proteomic approaches, we have discovered neutrophil defensins as additional prospective biomarkers for an anti-PD-(L)1 immunotherapy response. Thereby, we also demonstrated that the neutrophil defensins contribute in the activation of the immune response towards cancer cells, which could provide a new lead towards an anticancer therapy.

15.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817278

RESUMO

The c-Met receptor is a therapeutically actionable target in non-small-cell lung cancer (NSCLC), with one approved drug and several agents in development. Most suitable biomarkers for patient selection include c-Met amplification and exon-14 skipping. Our retrospective study focused on the frequency of different c-Met aberrations (overexpression, amplification and mutations) in 153 primary, therapy-naïve resection samples and their paired metastases, from Biobank@UZA. Furthermore, we determined the correlation of c-Met expression with clinicopathological factors, Epidermal Growth Factor Receptor (EGFR)-status and TP53 mutations. Our results showed that c-Met expression levels in primary tumors were comparable to their respective metastases. Five different mutations were detected by deep sequencing: three (E168D, S203T, N375S) previously described and two never reported (I333T, G783E). I333T, a new mutation in the Sema(phorin) domain of c-Met, might influence the binding of antibodies targeting the HGF-binding domain, potentially causing innate resistance. E168D and S203T mutations showed a trend towards a correlation with high c-Met expression (p = 0.058). We found a significant correlation between c-MET expression, EGFR expression (p = 0.010) and EGFR mutations (p = 0.013), as well as a trend (p = 0.057) with regards to TP53 mutant activity. In conclusion this study demonstrated a strong correlation between EGFR mutations, TP53 and c-Met expression in therapy-naïve primary resection samples. Moreover, we found two new c-Met mutations that warrant further studies.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas c-met/genética , Adulto , Idoso , Receptores ErbB/genética , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Proteína Supressora de Tumor p53/genética
16.
Cancer Immunol Immunother ; 68(10): 1573-1583, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31511925

RESUMO

Desmoid tumors (DTs) are local aggressive neoplasms, whose therapeutic approach has remained so far unsolved and in many instances controversial. Nowadays, immunotherapy appears to play a leading role in the treatment of various tumor types. Characterization of the tumor immune microenvironment (TME) and immune checkpoints can possibly help identify new immunotherapeutic targets for DTs. We performed immunohistochemistry (IHC) on 33 formalin-fixed paraffin-embedded (FFPE) tissue sections from DT samples to characterize the TME and the immune checkpoint expression profile. We stained for CD3, CD4, CD8, CD20, FoxP3, CD45RO, CD56, CD68, NKp46, granzyme B, CD27, CD70, PD1 and PD-L1. We investigated the expression of the markers in the tumoral stroma, as well as at the periphery of the tumor. We found that most of the tumors showed organization of lymphocytes into lymphoid aggregates at the periphery of the tumor, strongly resembling tertiary lymphoid organs (TLOs). The tumor expressed a significant number of memory T cells, both at the periphery and in the tumoral stroma. In the lymphoid aggregates, we also recognized a significant proportion of regulatory T cells. The immune checkpoint ligand PD-L1 was negative on the tumor cells in almost all samples. On the other hand, PD1 was partially expressed in lymphocytes at the periphery of the tumor. To conclude, we are the first to show that DTs display a strong immune infiltration at the tumor margins, with formation of lymphoid aggregates. Moreover, we demonstrated that there is no PD-L1-driven immune suppression present in the tumor cells.


Assuntos
Antígeno B7-H1/fisiologia , Fibromatose Agressiva/imunologia , Tolerância Imunológica , Adolescente , Adulto , Idoso , Antígenos CD20/análise , Ligante CD27/análise , Feminino , Fibromatose Agressiva/patologia , Humanos , Antígenos Comuns de Leucócito/análise , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral , Adulto Jovem
17.
Cancers (Basel) ; 11(8)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434357

RESUMO

Gasdermin E (GSDME), also known as deafness autosomal dominant 5 (DFNA5) and previously identified to be an inducer of regulated cell death, is frequently epigenetically inactivated in different cancer types, suggesting that GSDME is a tumor suppressor gene. In this study, we aimed to evaluate the tumor-suppressive effects of GSDME in two intestinal cancer mouse models. To mimic the silencing of GSDME by methylation as observed in human cancers, a Gsdme knockout (KO) mouse was developed. The effect of GSDME on tumorigenesis was studied both in a chemically induced and in a genetic intestinal cancer mouse model, as strong evidence shows that GSDME plays a role in human colorectal cancer and representative mouse models for intestinal cancer are available. Azoxymethane (AOM) was used to induce colorectal tumors in the chemically induced intestinal cancer model (n = 100). For the genetic intestinal cancer model, Apc1638N/+ mice were used (n = 37). In both experiments, the number of mice bearing microscopic proliferative lesions, the number and type of lesions per mouse and the histopathological features of the adenocarcinomas were compared between Gsdme KO and wild type (WT) mice. Unfortunately, we found no major differences between Gsdme KO and WT mice, neither for the number of affected mice nor for the multiplicity of proliferative lesions in the mice. However, recent breakthroughs on gasdermin function indicate that GSDME is an executioner of necrotic cell death. Therefore, it is possible that GSDME may be important for creating an inflammatory microenvironment around the tumor. This is in line with the trend towards more severe inflammation in WT compared to Gsdme KO mice, that we observed in our study. We conclude that the effect of GSDME in tumor biology is probably more subtle than previously thought.

18.
Mol Oncol ; 13(5): 1196-1213, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30859681

RESUMO

Polo-like kinase 1 (Plk1), a master regulator of mitosis and the DNA damage response, is considered to be an intriguing target in the research field of mitotic intervention. The observation that Plk1 is overexpressed in multiple human malignancies, including non-small-cell lung cancer (NSCLC), gave rise to the development of several small-molecule inhibitors. Volasertib, presently the most extensively studied Plk1 inhibitor, has been validated to efficiently reduce tumor growth in preclinical settings. Unfortunately, only modest antitumor activity against solid tumors was reported in clinical trials. This discrepancy prompted research into the identification of predictive biomarkers. In this study, we investigated the therapeutic effect of volasertib monotherapy (i.e., cytotoxicity, cell cycle distribution, apoptotic cell death, cellular senescence, and migration) in a panel of NSCLC cell lines differing in p53 status under both normal and reduced oxygen tension (<0.1% O2 ). A strong growth inhibitory effect was observed in p53 wild-type cells (A549 and A549-NTC), with IC50 values significantly lower than those in p53 knockdown/mutant cells (A549-920 and NCI-H1975) (P < 0.001). While mitotic arrest was significantly greater in cells with nonfunctional p53 (P < 0.005), apoptotic cell death (P < 0.026) and cellular senescence (P < 0.021) were predominantly induced in p53 wild-type cells. Overall, the therapeutic effect of volasertib was reduced under hypoxia (P < 0.050). Remarkably, volasertib inhibited cell migration in all cell lines tested (P < 0.040), with the exception of for the NCI-H1975 p53 mutant cell line. In conclusion, our results show an important difference in the therapeutic effect of Plk1 inhibition in NSCLC cells with versus without functional p53. Overall, the p53 wild-type cell lines were more sensitive to volasertib treatment, suggesting that p53 might be a predictive biomarker for Plk1 inhibition in NSCLC. Moreover, our results pave the way for new combination strategies with Plk1 inhibitors to enhance antitumor activity.


Assuntos
Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Apoptose/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/genética , Quinase 1 Polo-Like
19.
Oncoimmunology ; 7(7): e1440167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900042

RESUMO

Cancer-associated fibroblasts (CAFs) are involved in the proliferative and invasive behavior of colorectal cancer (CRC). Nonetheless, CAFs represent a heterogeneous population with both cancer-promoting and cancer-restraining actions, lacking specific markers to target them. Expression of the immune checkpoint molecule CD70 is normally limited to cells of the lymphoid lineage. Instead, tumor cells hijack CD70 to facilitate immune evasion by increasing the amount of suppressive regulatory T cells (Tregs). The aim of this study was to explore CD70 expression patterns in CRC, not merely focusing on the tumor cells, but also taking the tumor stromal cells into account. We have analyzed the prognostic value of CD70 expression by immunohistochemistry in CRC specimens and its relationship with well-known fibroblast markers and Tregs. In addition, in vitro experiments were conducted to unravel the role of CD70-positive CAFs on migration and immune escape. We reveal prominent expression of CD70 on a specific subset of CAFs in invasive CRC specimens. Cancer cells show almost no expression of CD70. The presence of CD70-positive CAFs proved to be an independent adverse prognostic marker. Functionally, CD70-positive CAFs stimulated migration and significantly increased the frequency of naturally occurring Tregs. In conclusion, we have identified the expression of CD70 on CAFs as a novel prognostic marker for CRC. We have found evidence of a cross talk between CD70+ CAFs and naturally occurring Tregs, paving the way towards immune escape. As such, this study provides a strong rationale for the exploration of CD70-targeting antibodies in CRC.

20.
PLoS Genet ; 14(4): e1007321, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29621230

RESUMO

Hyperostosis Cranialis Interna (HCI) is a rare bone disorder characterized by progressive intracranial bone overgrowth at the skull. Here we identified by whole-exome sequencing a dominant mutation (L441R) in SLC39A14 (ZIP14). We show that L441R ZIP14 is no longer trafficked towards the plasma membrane and excessively accumulates intracellular zinc, resulting in hyper-activation of cAMP-CREB and NFAT signaling. Conditional knock-in mice overexpressing L438R Zip14 in osteoblasts have a severe skeletal phenotype marked by a drastic increase in cortical thickness due to an enhanced endosteal bone formation, resembling the underlying pathology in HCI patients. Remarkably, L438R Zip14 also generates an osteoporotic trabecular bone phenotype. The effects of osteoblastic overexpression of L438R Zip14 therefore mimic the disparate actions of estrogen on cortical and trabecular bone through osteoblasts. Collectively, we reveal ZIP14 as a novel regulator of bone homeostasis, and that manipulating ZIP14 might be a therapeutic strategy for bone diseases.


Assuntos
Proteínas de Transporte de Cátions/genética , Homeostase/genética , Hiperostose/genética , Mutação , Osteosclerose/genética , Base do Crânio/anormalidades , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Hiperostose/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteosclerose/metabolismo , Transdução de Sinais/genética , Base do Crânio/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA