Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960373

RESUMO

MXenes are a class of 2D transition-metal carbides, nitrides, and carbonitrides with exceptional properties, including substantial electrical and thermal conductivities, outstanding mechanical strength, and a considerable surface area, rendering them an appealing choice for gas sensors. This manuscript provides a comprehensive analysis of heterostructures based on MXenes employed in gas-sensing applications and focuses on addressing the limited understanding of the sensor mechanisms of MXene-based heterostructures while highlighting their potential to enhance gas-sensing performance. The manuscript begins with a broad overview of gas-sensing mechanisms in both pristine materials and MXene-based heterostructures. Subsequently, it explores various features of MXene-based heterostructures, including their composites with other materials and their prospects for gas-sensing applications. Additionally, the manuscript evaluates different engineering strategies for MXenes and compares their advantages to other materials while discussing the limitations of current state-of-the-art sensors. Ultimately, this review seeks to foster collaboration and knowledge exchange within the field, facilitating the development of high-performance gas sensors based on MXenes.

2.
iScience ; 26(8): 107410, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37593457

RESUMO

Nitrogen oxides (NOx) emissions carry pernicious consequences on air quality and human health, prompting an upsurge of interest in eliminating them from the atmosphere. The electrochemical NOx reduction reaction (NOxRR) is among the promising techniques for NOx removal and potential conversion into valuable chemical feedstock with high conversion efficiency while benefiting energy conservation. However, developing efficient and stable electrocatalysts for NOxRR remains an arduous challenge. This review provides a comprehensive survey of recent advancements in NOxRR, encompassing the underlying fundamentals of the reaction mechanism and rationale behind the design of electrocatalysts using computational modeling and experimental efforts. The potential utilization of NOxRR in a Zn-NOx battery is also explored as a proof of concept for concurrent NOx abatement, NH3 synthesis, and decarbonizing energy generation. Despite significant strides in this domain, several hurdles still need to be resolved in developing efficient and long-lasting electrocatalysts for NOx reduction. These possible means are necessary to augment the catalytic activity and electrocatalyst selectivity and surmount the challenges of catalyst deactivation and corrosion. Furthermore, sustained research and development of NOxRR could offer a promising solution to the urgent issue of NOx pollution, culminating in a cleaner and healthier environment.

3.
Phys Chem Chem Phys ; 25(28): 18584-18608, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37409617

RESUMO

The search for materials for next-generation spintronic applications has witnessed exponentially increasing interest, mainly due to the explosive development of numerous two-dimensional (2D) materials discovered in the last decade. Among them, MXenes have emerged as promising candidates for many applications due to their unique and versatile tunability in structure and properties. In particular, their excellent combination of conductivity and highly charged surfaces leads to outstanding electrochemical properties that are significant in electronic applications. Moreover, the ease of modifying the atomic and electronic structures, and thus the functionalities of MXenes, further opens up the opportunity to realize MXenes-based spintronic device applications. The explosive development of MXenes, such as tuning the bandgap and enhancing their magnetic properties, could pave the way for the integration of MXenes in device configurations suitable for spintronics. In this article, we provide an overview of the potential applications of MXenes with a special focus on spintronic device applications. We commence the discussion with various fundamental aspects of spintronics, including the understanding of materials for spintronics in general, MXenes, and their fabrication, followed by presenting perspectives on plausible strategies and future challenges in integrating MXenes into spintronic devices.

4.
J Environ Manage ; 334: 117477, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780811

RESUMO

The intensification of fossil fuel usage results in significant air pollution levels. Efforts have been put into developing efficient technologies capable of converting air pollution into valuable products, including fuels and valuable chemicals (e.g., CO2 to hydrocarbon and syngas and NOx to ammonia). Among the strategic efforts to mitigate the excessive concentration of CO2 and NOx pollutants in the atmosphere, the electrochemical reduction technology of CO2 (CO2RR) and NOx (NOxRR) emerges as one of the most promising approaches. It is even more attractive if CO2RR and NOxRR are paired with renewables to store intermittent electricity in the form of chemical feedstocks. This review provides an overview of the electrochemical reduction process to convert CO2 to C1 and/or C2+ chemicals and NOx to ammonia (NH3) with a focus on electrocatalysts, electrolytes, electrolyzer, and catalytic reactor designs toward highly selective electrochemical conversion of the desired products. While the attempts in these aspects are enormous, economic consideration and environmental feasibility for actual implementation are not comprehensively provided. We discuss CO2RR and NOxRR from the life cycle and techno-economic analyses to perceive the feasibility of the current achievements. The remaining challenges associated with the industrial implementation of electrochemical CO2 and NOx reduction are additionally provided.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Amônia , Dióxido de Carbono , Tecnologia
5.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500902

RESUMO

The unique properties of MXenes have been deemed to be of significant interest in various emerging applications. However, MXenes provide a major drawback involving environmentally harmful and toxic substances for its general fabrication in large-scale production and employing a high-temperature solid-state reaction followed by selective etching. Meanwhile, how MXenes are synthesized is essential in directing their end uses. Therefore, making strategic approaches to synthesize greener, safer, more sustainable, and more environmentally friendly MXenes is imperative to commercialize at a competitive price. With increasing reports of green synthesis that promote advanced technologies and non-toxic agents, it is critical to compile, summarize, and synthesize the latest development of the green-related technology of MXenes. We review the recent progress of greener, safer, and more sustainable MXene synthesis with a focus on the fundamental synthetic process, the mechanism, and the general advantages, and the emphasis on the MXene properties inherited from such green synthesis techniques. The emerging use of the so-called green MXenes in energy conversion and storage, environmental remediation, and biomedical applications is presented. Finally, the remaining challenges and prospects of greener MXene synthesis are discussed.

6.
Bioprocess Biosyst Eng ; 45(9): 1421-1445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35608710

RESUMO

Rapid transmission of infectious microorganisms such as viruses and bacteria through person-to-person contact has contributed significantly to global health issues. The high survivability of these microorganisms on the material surface enumerates their transmissibility to the susceptible patient. The antimicrobial coating has emerged as one of the most interesting technologies to prevent growth and subsequently kill disease-causing microorganisms. It offers an effective solution a non-invasive, low-cost, easy-in-use, side-effect-free, and environmentally friendly method to prevent nosocomial infection. Among antimicrobial coating, zinc oxide (ZnO) stands as one of the excellent materials owing to zero toxicity, high biocompatibility to human organs, good stability, high abundancy, affordability, and high photocatalytic performance to kill various infectious pathogens. Therefore, this review provides the latest research progress on advanced applications of ZnO nanostructure-based antibacterial coatings for medical devices, biomedical applications, and health care facilities. Finally, future challenges and clinical practices of ZnO-based antibacterial coating are addressed.


Assuntos
Anti-Infecciosos , Óxido de Zinco , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Humanos , Óxido de Zinco/farmacologia
7.
Nanomicro Lett ; 13(1): 207, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633560

RESUMO

Molybdenum-based materials have been intensively investigated for high-performance gas sensor applications. Particularly, molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunable structural and physicochemical properties that meet sensor requirements. These materials have good durability, are naturally abundant, low cost, and have facile preparation, allowing scalable fabrication to fulfill the growing demand of susceptible sensor devices. Significant advances have been made in recent decades to design and fabricate various molybdenum oxides- and dichalcogenides-based sensing materials, though it is still challenging to achieve high performances. Therefore, many experimental and theoretical investigations have been devoted to exploring suitable approaches which can significantly enhance their gas sensing properties. This review comprehensively examines recent advanced strategies to improve the nanostructured molybdenum-based material performance for detecting harmful pollutants, dangerous gases, or even exhaled breath monitoring. The summary and future challenges to advance their gas sensing performances will also be presented.

8.
Adv Healthc Mater ; 10(20): e2100970, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34318999

RESUMO

A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.


Assuntos
Materiais Inteligentes , Dispositivos Eletrônicos Vestíveis , Inteligência Artificial , Biomarcadores , Testes Respiratórios , Humanos
9.
RSC Adv ; 11(26): 15539-15545, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35481182

RESUMO

Engineering the interfaces between materials of different structures and bonding nature in a well-controlled fashion has been playing a key role in developing new devices with unprecedented functionalities. In particular, direct growth of nanostructures on van der Waals substrates not only is essential for fully exploiting the potential of a wide variety of self-assembled nano-sized heterostructures but also can expand the horizons for electronic and photonic applications that involve nanostructures of specific composition and geometry. In the present work, we demonstrate the epitaxial growth of a self-assembled vertically aligned nanocomposite of magnetoelectric oxides on a flexible substrate via van der Waals epitaxy, which evidently adds an additional dimension of flexibility to similar thin-film heteroepitaxy architectures that have been mostly realized on rigid lattice-matched substrates. It is noted that the utilization of buffer layers is essential for obtaining high-quality flexible thin films with vertically aligned nanocomposite architecture. We believe that this route can provide alternative options for developing flexible thin-film devices with heteroepitaxy architectures of other functional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA