Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 231: 119621, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693290

RESUMO

Besides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n = 312) from 24 different wastewater treatment plants were obtained between May 9 (week 19 of 2022) and August 4 (week 31 of 2022). Following concentration of viral particles by a validated aluminum adsorption-precipitation method, a qPCR procedure allowed us to detect MPXV DNA in 56 wastewater samples collected from May 16 to August 4, 2022, with values ranging between 2.2 × 103 to 8.7 × 104 genome copies (gc)/L. This study shows that MPXV DNA can be reproducibly detected by qPCR in longitudinal samples collected from different Spanish wastewater treatment plants. According to data from the National Epidemiological Surveillance Network (RENAVE) in Spain a total of 6,119 cases have been confirmed as of August 19, 2022. However, and based on the wastewater data, the reported clinical cases seem to be underestimated and asymptomatic infections may be more frequent than expected.


Assuntos
COVID-19 , Monkeypox virus , Humanos , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , DNA , RNA Viral
2.
PLoS Pathog ; 19(1): e1011136, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716344

RESUMO

African swine fever virus (ASFV) causes a devastating hemorrhagic disease with worldwide circulation and no widely available therapeutic prevention. The infectious particle has a multilayered architecture that is articulated upon an endoplasmic reticulum (ER)-derived inner envelope. This membrane acts as docking platform for the assembly of the outer icosahedral capsid and the underlying core shell, a bridging layer required for the formation of the central genome-containing nucleoid. While the details of outer capsid assembly are relatively well understood, those of core formation remain unclear. Here we report the functional characterization of pEP84R, a transmembrane polypeptide embedded in the inner envelope that surrounds the viral core. Using an ASFV recombinant inducibly expressing the EP84R gene, we show that absence of pEP84R results in the formation of non-infectious core-less icosahedral particles displaying a significant DNA-packaging defect. Concomitantly, aberrant core shell-like structures formed by co-assembly of viral polyproteins pp220 and pp62 are mistargeted to non-ER membranes, as also occurs when these are co-expressed in the absence of other viral proteins. Interestingly, co-expression of both polyproteins with pEP84R led to the formation of ER-targeted core shell-like assemblies and co-immunoprecipitation assays showed that pEP84R binds to the N-terminal region of pp220. Altogether, these results indicate that pEP84R plays a crucial role in core assembly by targeting the core shell polyproteins to the inner viral envelope, which enables subsequent genome packaging and nucleoid formation. These findings unveil a key regulatory mechanism for ASFV morphogenesis and identify a relevant novel target for the development of therapeutic tools against this re-emerging threat.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Montagem de Vírus , Proteínas Virais/genética , Proteínas Virais/metabolismo , Poliproteínas/metabolismo , Proteínas de Membrana
3.
Lancet Microbe ; 4(1): e21-e28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436538

RESUMO

BACKGROUND: The transmission of monkeypox virus occurs through direct contact, but transmission through saliva or exhaled droplets and aerosols has not yet been investigated. We aimed to assess the presence of monkeypox virus DNA and infectious virus in saliva samples and droplets and aerosols exhaled from patients infected with monkeypox virus. METHODS: We did a cross-sectional study in patients with monkeypox confirmed by PCR who attended two health centres in Madrid, Spain. For each patient, we collected samples of saliva, exhaled droplets within a mask, and aerosols captured by air filtration through newly developed nanofiber filters. We evaluated the presence of monkeypox virus in the samples by viral DNA detection by quantitative PCR (qPCR) and isolation of infectious viruses in cell cultures. FINDINGS: Between May 18 and July 15, 2022, 44 patients with symptomatic monkeypox attended two health centres in Madrid and were included in the study. All were cisgender men, with a median age of 35·0 years (IQR 11·3). We identified high loads of monkeypox virus DNA by qPCR in 35 (85%) of 41 saliva samples. Infectious monkeypox virus was recovered from 22 (67%) of 33 saliva samples positive for monkeypox virus DNA. We also found a significant association between the number of affected cutaneous areas or general symptoms and the viral load present in saliva samples. Droplets exhaled from patients with monkeypox, detected inside a mask, contained monkeypox virus DNA in 32 (71%) of 45 samples, with two of the 32 positive samples showing the presence of the infectious virus. Monkeypox virus DNA in aerosols, collected from the medical consultation room, were detected in 27 (64%) of 42 samples, despite patients wearing an FFP2 mask during the visit. Infectious virus was not recovered from aerosol samples. High levels of monkeypox virus DNA were identified in aerosols collected from a hospital isolation room housing a patient with monkeypox. INTERPRETATION: The identification of high viable monkeypox virus loads in saliva in most patients with monkeypox and the finding of monkeypox virus DNA in droplets and aerosols warrants further epidemiological studies to evaluate the potential relevance of the respiratory route of infection in the 2022 monkeypox virus outbreak. FUNDING: EU, Consejo Superior de Investigaciones Científicas, and Ciberinfec.


Assuntos
Monkeypox virus , Mpox , Masculino , Humanos , Criança , Monkeypox virus/genética , Mpox/diagnóstico , Estudos Transversais , Saliva , Espanha/epidemiologia , Aerossóis , DNA
4.
Methods Mol Biol ; 2597: 121-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374418

RESUMO

Viruses encode secreted proteins that bind chemokines to modulate their activity. Viral proteins may simultaneously interact with glycosaminoglycans allowing these proteins to be anchored at the cell surface to increase their anti-chemokine activity in the proximity of infection. Here we describe methodology to evaluate the interaction of viral secreted proteins with cell-surface glycosaminoglycans by immunofluorescence and detection by flow cytometry or microscopy. These methods could be equally applied to other chemokine binding proteins that do not have viral origin.


Assuntos
Proteínas de Transporte , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Proteínas de Transporte/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Citometria de Fluxo , Quimiocinas/metabolismo , Ligação Proteica , Proteínas Virais/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-36612897

RESUMO

The COVID-19 pandemic highlighted the dangers of airborne pathogen transmission. SARS-CoV-2 is known to be transmitted through aerosols; however, little is known about the dynamics of these aerosols in real environments, the conditions, and the minimum viral load required for infection. Efficiently measuring and capturing pathogens present in the air would help to understand the infection process. Air samplers usually take several hours to obtain an air sample. In this work a fast (1-2 min) method for capturing bioaerosols into a liquid medium has been tested in hospital rooms with COVID-19 patients. This fast sampling allows detecting transient levels of aerosols in the air. SARS-CoV-2 RNA is detected in aerosols from several hospital rooms at different levels. Interestingly, there are sudden boosts of the SARS-CoV-2 load in the air, suggesting that SARS-CoV-2 could be released abundantly at certain moments. These results show that the distribution of SARS-CoV-2-containing aerosols is not homogeneous in the hospital room. This technology is a fast and effective tool for capturing airborne matter in a very short time, which allows for fast decision-making any kind of hazard in the air is detected. It is also useful for a better understanding of aerosols dynamics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , RNA Viral , Aerossóis e Gotículas Respiratórios , Hospitais
7.
Pathogens ; 10(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34451529

RESUMO

Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF-based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors. This article reviews in detail the various TNF decoy receptors identified to date in the genomes from different poxvirus species, with a special focus on their impact on poxvirus pathogenesis and their potential use as therapeutic molecules.

8.
Nat Commun ; 11(1): 4938, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009401

RESUMO

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here, we demonstrate that the NRF2 antioxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular antiviral program that potently inhibits replication of SARS-CoV2 across cell lines. The inhibitory effect of 4-OI and DMF extends to the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, 4-OI and DMF limit host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and in suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Fumarato de Dimetilo/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Pneumonia Viral/tratamento farmacológico , Succinatos/agonistas , Adulto , Antioxidantes/farmacologia , Betacoronavirus/metabolismo , COVID-19 , Infecções por Coronavirus/virologia , Fumarato de Dimetilo/farmacologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Interferon Tipo I , Pulmão/patologia , Masculino , Fator 2 Relacionado a NF-E2/genética , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Succinatos/farmacologia , Replicação Viral/efeitos dos fármacos
10.
Sci Adv ; 6(38)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32948585

RESUMO

Cells contain numerous immune sensors to detect virus infection. The cyclic GMP-AMP (cGAMP) synthase (cGAS) recognizes cytosolic DNA and activates innate immune responses via stimulator of interferon genes (STING), but the impact of DNA sensing pathways on host protective responses has not been fully defined. We demonstrate that cGAS/STING activation is required to resist lethal poxvirus infection. We identified viral Schlafen (vSlfn) as the main STING inhibitor, and ectromelia virus was severely attenuated in the absence of vSlfn. Both vSlfn-mediated virulence and STING inhibitory activity were mapped to the recently discovered poxin cGAMP nuclease domain. Animals were protected from subcutaneous, respiratory, and intravenous infection in the absence of vSlfn, and interferon was the main antiviral protective mechanism controlled by the DNA sensing pathway. Our findings support the idea that manipulation of DNA sensing is an efficient therapeutic strategy in diseases triggered by viral infection or tissue damage-mediated release of self-DNA.


Assuntos
Proteínas de Membrana , Viroses , Animais , DNA , Interferons , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos , Nucleotidiltransferases/metabolismo
11.
mBio ; 11(4)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788374

RESUMO

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus (NCLDV) causing a lethal hemorrhagic disease that currently threatens the global pig industry. Despite its relevance in the infectious cycle, very little is known about the internalization of ASFV in the host cell. Here, we report the characterization of ASFV protein pE199L, a cysteine-rich structural polypeptide with similarity to proteins A16, G9, and J5 of the entry fusion complex (EFC) of poxviruses. Using biochemical and immunomicroscopic approaches, we found that, like the corresponding poxviral proteins, pE199L localizes to the inner viral envelope and behaves as an integral transmembrane polypeptide with cytosolic intramolecular disulfide bonds. Using an ASFV recombinant that inducibly expresses the E199L gene, we found that protein pE199L is not required for virus assembly and egress or for virus-cell binding and endocytosis but is required for membrane fusion and core penetration. Interestingly, similar results have been previously reported for ASFV protein pE248R, an inner membrane virion component related to the poxviral L1 and F9 EFC proteins. Taken together, these findings indicate that ASFV entry relies on a form of fusion machinery comprising proteins pE248R and pE199L that displays some similarities to the unconventional fusion apparatus of poxviruses. Also, these results provide novel targets for the development of strategies that block the first stages of ASFV replication.IMPORTANCE African swine fever virus (ASFV) causes a highly lethal swine disease that is currently present in many countries of Eastern Europe, the Russian Federation, and Southeast Asia, severely affecting the pig industry. Despite extensive research, effective vaccines or antiviral strategies are still lacking and relevant gaps in knowledge of the fundamental biology of the viral infection cycle exist. In this study, we identified pE199L, a protein of the inner viral membrane that is required for virus entry. More specifically, pE199L is necessary for the fusion event that leads to the penetration of the genome-containing core in the host cell. Our results significantly increase our knowledge of the process of internalization of African swine fever virus, which may instruct future research on antiviral strategies.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Fusão de Membrana , Proteínas Virais/metabolismo , Internalização do Vírus , Vírus da Febre Suína Africana/metabolismo , Animais , Chlorocebus aethiops , Endocitose , Suínos , Células Vero , Proteínas Virais/genética
12.
Curr Opin Immunol ; 66: 50-56, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32408109

RESUMO

Poxviruses and herpesviruses encode secreted versions of cytokine receptors as a unique strategy to evade the host immune response. Recent advances in the field have shown the great impact of some of these proteins in immune modulation and viral pathogenesis, and have uncovered unique properties of these viral proteins not found in the cellular counterparts. These modifications inspired by viruses lead to improved immune modulatory activity of the soluble cytokine receptors, information that has been used to develop more efficient therapeutics to treat inflammatory conditions.


Assuntos
Citocinas/imunologia , Herpesviridae/imunologia , Poxviridae/imunologia , Proteínas Virais/imunologia , Animais , Humanos
13.
Science ; 368(6497): 1371-1376, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32439659

RESUMO

The effect of immunometabolism on age-associated diseases remains uncertain. In this work, we show that T cells with dysfunctional mitochondria owing to mitochondrial transcription factor A (TFAM) deficiency act as accelerators of senescence. In mice, these cells instigate multiple aging-related features, including metabolic, cognitive, physical, and cardiovascular alterations, which together result in premature death. T cell metabolic failure induces the accumulation of circulating cytokines, which resembles the chronic inflammation that is characteristic of aging ("inflammaging"). This cytokine storm itself acts as a systemic inducer of senescence. Blocking tumor necrosis factor-α signaling or preventing senescence with nicotinamide adenine dinucleotide precursors partially rescues premature aging in mice with Tfam-deficient T cells. Thus, T cells can regulate organismal fitness and life span, which highlights the importance of tight immunometabolic control in both aging and the onset of age-associated diseases.


Assuntos
Senilidade Prematura/imunologia , Proteínas de Ligação a DNA/deficiência , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Multimorbidade , Linfócitos T/metabolismo , Fatores de Transcrição/deficiência , Senilidade Prematura/genética , Senilidade Prematura/prevenção & controle , Animais , Síndrome da Liberação de Citocina/imunologia , Proteínas de Ligação a DNA/genética , Feminino , Deleção de Genes , Inflamação/genética , Inflamação/imunologia , Longevidade , Masculino , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/genética , NAD/administração & dosagem , NAD/farmacologia , Aptidão Física , Linfócitos T/ultraestrutura , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores
14.
J Clin Med ; 9(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244308

RESUMO

Soluble receptors of cytokines are able to modify cytokine activities and therefore the immune system, and some have intrinsic biological activities without mediation from their cytokines. The soluble interferon beta (IFN-ß) receptor is generated through alternative splicing of IFNAR2 and has both agonist and antagonist properties for IFN-ß, but its role is unknown. We previously demonstrated that a recombinant human soluble IFN-ß receptor showed intrinsic therapeutic efficacy in a mouse model of multiple sclerosis. Here we evaluate the potential biological activities of recombinant sIFNAR2 without the mediation of IFN-ß in human cells. Recombinant sIFNAR2 down-regulated the production of IL-17 and IFN-É£ and reduced the cell proliferation rate. Moreover, it showed a strong antiviral activity, fully protecting the cell monolayer after being infected by the virus. Specific inhibitors completely abrogated the antiviral activity of IFN-ß, but not that of the recombinant sIFNAR2, and there was no activation of the JAK-STAT signaling pathway. Consequently, r-sIFNAR2 exerts immunomodulatory, antiproliferative and antiviral activities without IFN-ß mediation, and could be a promising treatment against viral infections and immune-mediated diseases.

15.
Nat Commun ; 9(1): 5440, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575728

RESUMO

Soluble cytokine decoy receptors are potent immune modulatory reagents with therapeutic applications. Some virus-encoded secreted cytokine receptors interact with glycosaminoglycans expressed at the cell surface, but the biological significance of this activity in vivo is poorly understood. Here, we show the type I interferon binding protein (IFNα/ßBP) encoded by vaccinia and ectromelia viruses requires of this cell binding activity to confer full virulence to these viruses and to retain immunomodulatory activity. Expression of a variant form of the IFNα/ßBP that inhibits IFN activity, but does not interact with cell surface glycosaminoglycans, results in highly attenuated viruses with a virulence similar to that of the IFNα/ßBP deletion mutant viruses. Transcriptomics analysis and infection of IFN receptor-deficient mice confirmed that the control of IFN activity is the main function of the IFNα/ßBP in vivo. We propose that retention of secreted cytokine receptors at the cell surface may largely enhance their immunomodulatory activity.


Assuntos
Glicosaminoglicanos/metabolismo , Interferon Tipo I/metabolismo , Infecções por Poxviridae/imunologia , Poxviridae/patogenicidade , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Poxviridae/imunologia , Poxviridae/metabolismo , Células Vero , Ligação Viral
16.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-29946427

RESUMO

Poxviruses encode a set of secreted proteins that bind cytokines and chemokines as a strategy to modulate host defense mechanisms. These viral proteins mimic the activity of host cytokine decoy receptors but have unique properties that may enhance their activity. Here, we describe the ability of poxvirus cytokine receptors to attach to the cell surface after secretion from infected cells, and we discuss the advantages that this property may confer to these viral immunomodulatory proteins.

17.
Nat Commun ; 9(1): 1790, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724993

RESUMO

The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.


Assuntos
Quimiocinas/fisiologia , Ectromelia Infecciosa/imunologia , Ectromelia Infecciosa/prevenção & controle , Inflamação/etiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Feminino , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Poxviridae/patogenicidade , Fatores de Virulência/fisiologia , Replicação Viral
18.
J Immunol Res ; 2017: 5157626, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280747

RESUMO

Vaccinia virus (VACV) encodes the soluble type I interferon (IFN) binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.


Assuntos
Fibroblastos/virologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Interferon Tipo I/imunologia , Vaccinia virus/imunologia , Proteínas Virais/metabolismo , Animais , Sequência de Bases/genética , Linhagem Celular , Fibroblastos/imunologia , Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/metabolismo , Raios Ultravioleta , Vaccinia virus/genética , Vaccinia virus/fisiologia , Vaccinia virus/efeitos da radiação , Proteínas Virais/genética , Replicação Viral
19.
PLoS One ; 12(3): e0173697, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282449

RESUMO

It is often not possible to demonstrate causality within the context of gut microbiota dysbiosis-linked diseases. Thus, we need a better understanding of the mechanisms whereby an altered host immunophysiology shapes its resident microbiota. In this regard, immune-modulating poxvirus strains and mutants could differentially alter gut mucosal immunity in the context of a natural immune response, providing a controlled natural in vivo setting to deepen our understanding of the immune determinants of microbiome composition. This study represents a proof-of-concept that the use of an existing collection of different immune-modulating poxviruses may represent an innovative tool in gut microbiome research. To this end, 16S rRNA amplicon sequencing and RNAseq transcriptome profiling were employed as proxies for microbiota composition and gut immunophysiological status in the analysis of caecal samples from control mice and mice infected with various poxvirus types. Our results show that different poxvirus species and mutants elicit different shifts in the mice mucosa-associated microbiota and, in some instances, significant concomitant shifts in gut transcriptome profiles, thus providing an initial validation to the proposed model.


Assuntos
Microbioma Gastrointestinal/fisiologia , Infecções por Poxviridae/imunologia , Poxviridae/patogenicidade , Animais , Vírus da Ectromelia/genética , Vírus da Ectromelia/patogenicidade , Feminino , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Camundongos Endogâmicos BALB C , Mutação , Poxviridae/genética , Poxviridae/imunologia , Infecções por Poxviridae/microbiologia , Infecções por Poxviridae/fisiopatologia , RNA Ribossômico 16S , Vaccinia virus/genética , Vaccinia virus/patogenicidade
20.
PLoS Pathog ; 12(4): e1005595, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27110717

RESUMO

African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Internalização do Vírus , Desenvelopamento do Vírus/fisiologia , Animais , Western Blotting , Capsídeo/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endocitose , Endossomos/ultraestrutura , Endossomos/virologia , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Microscopia Eletrônica , Microscopia de Fluorescência , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Suínos , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA