Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(8): 3648-3665, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36005146

RESUMO

Breast cancer is the leading cause of cancer death among women worldwide. Multiple extrinsic and intrinsic factors are associated with this disease's development. Various research groups worldwide have reported the presence of human papillomavirus (HPV) DNA in samples of malignant breast tumors. Although its role in mammary carcinogenesis is not fully understood, it is known that the HPV genome, once inserted into host cells, has oncogenic capabilities. The present study aimed to detect the presence of HPV DNA in 116 breast tissue biopsies and classify them according to their histology. It was found that 50.9% of the breast biopsies analyzed were malignant neoplasms, of which 74.6% were histologically classified as infiltrating ductal carcinoma. In biopsies with non-malignant breast disease, fibroadenoma was the most common benign neoplasm (39.1%). Detection of HPV DNA was performed through nested PCR using the external primer MY09/11 and the internal primer GP5+/6+. A hybridization assay genotyped HPV. HPV DNA was identified in 20.3% (12/59) of malignant neoplasms and 35% non-malignant breast disease (16/46). It was also detected in 27.3% (3/11) of breast tissue biopsies without alteration. However, there are no statistically significant differences between these groups and the existence of HPV DNA (p = 0.2521). Its presence was more frequent in non-malignant alterations than in malignant neoplasias. The most frequent genotypes in the HPV-positive samples were low-risk (LR) HPV-42 followed by high-risk (HR) HPV-31.

2.
Membranes (Basel) ; 12(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35207103

RESUMO

In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial-mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.

3.
Curr Mol Med ; 22(7): 572-583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34514997

RESUMO

On December 31, 2019, the World Health Organization received a report of several pneumonia cases in Wuhan, China. The causative agent was later confirmed as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since then, the SARS-CoV-2 virus has spread throughout the world, giving rise in 2020 to the 2019 coronavirus (COVID-19) pandemic, which, according to the world map of the World Health Organization, has, until May 18, 2021, infected 163,312,429 people and caused 3,386,825 deaths throughout the world. Most critical patients progress rapidly to acute respiratory distress syndrome (ARDS) and, in underlying form, septic shock, irreversible metabolic acidosis, blood coagulation dysfunction, or hemostatic and thrombotic anomalies have been reported as the leading causes of death due to COVID-19. The main findings in severe and fatal COVID-19 patients make it clear that platelets play a crucial role in developing severe disease cases. Platelets are the enucleated cells responsible for hemostasis and thrombi formation; thus, platelet hyperreactivity induced by pro-inflammatory microenvironments contributes to the "cytokine storm" that characterizes the more aggressive course of COVID- 19.


Assuntos
COVID-19 , Plaquetas , China , Síndrome da Liberação de Citocina , Humanos , SARS-CoV-2
4.
Toxins (Basel) ; 12(5)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384723

RESUMO

Bacillus thuringiensis (Bt) is a ubiquitous bacterium in soils, insect cadavers, phylloplane, water, and stored grain, that produces several proteins, each one toxic to different biological targets such as insects, nematodes, mites, protozoa, and mammalian cells. Most Bt toxins identify their particular target through the recognition of specific cell membrane receptors. Cry proteins are the best-known toxins from Bt and a great amount of research has been published. Cry are cytotoxic to insect larvae that affect important crops recognizing specific cell membrane receptors such as cadherin, aminopeptidase-N, and alkaline phosphatase. Furthermore, some Cry toxins such as Cry4A, Cry4B, and Cry11A act synergistically with Cyt toxins against dipteran larvae vectors of human disease. Research developed with Cry proteins revealed that these toxins also could kill human cancer cells through the interaction with specific receptors. Parasporins are a small group of patented toxins that may or may not have insecticidal activity. These proteins could kill a wide variety of mammalian cancer cells by recognizing specific membrane receptors, just like Cry toxins do. Surface layer proteins (SLP), unlike the other proteins produced by Bt, are also produced by most bacteria and archaebacteria. It was recently demonstrated that SLP produced by Bt could interact with membrane receptors of insect and human cancer cells to kill them. Cyt toxins have a structure that is mostly unrelated to Cry toxins; thereby, other mechanisms of action have been reported to them. These toxins affect mainly mosquitoes that are vectors of human diseases like Anopheles spp (malaria), Aedes spp (dengue, zika, and chikungunya), and Culex spp (Nile fever and Rift Valley fever), respectively. In addition to the Cry, Cyt, and parasporins toxins produced during spore formation as inclusion bodies, Bt strains also produce Vip (Vegetative insecticidal toxins) and Sip (Secreted insecticidal proteins) toxins with insecticidal activity during their vegetative growth phase.


Assuntos
Antineoplásicos/farmacologia , Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Neoplasias/tratamento farmacológico , Animais , Proteínas de Bactérias/farmacologia , Linhagem Celular Tumoral , Humanos , Glicoproteínas de Membrana/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA