RESUMO
The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain's plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant.
Assuntos
Doenças das Plantas , Pseudomonas , Zea mays , Zea mays/microbiologia , Zea mays/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fungos/genética , Agricultura/métodos , Genômica/métodos , Genoma BacterianoRESUMO
Candida auris is an emerging multidrug-resistant and opportunistic pathogenic yeast. Whole-genome sequencing analysis has defined five major clades, each from a distinct geographic region. The current study aimed to examine the genome of the C. auris 20-1498 strain, which is the first isolate of this fungus identified in Mexico. Based on whole-genome sequencing, the draft genome was found to contain 70 contigs. It had a total genome size of 12.86 Mbp, an N50 value of 1.6 Mbp, and an average guanine-cytosine (GC) content of 45.5%. Genome annotation revealed a total of 5432 genes encoding 5515 proteins. According to the genomic analysis, the C. auris 20-1498 strain belongs to clade IV (containing strains endemic to South America). Of the two genes (ERG11 and FKS1) associated with drug resistance in C. auris, a mutation was detected in K143R, a gene located in a mutation hotspot of ERG11 (lanosterol 14-α-demethylase), an antifungal drug target. The focus on whole-genome sequencing and the identification of mutations linked to the drug resistance of fungi could lead to the discovery of new therapeutic targets and new antifungal compounds.
RESUMO
The bacterial component of plant holobiont maintains valuable interactions that contribute to plants' growth, adaptation, stress tolerance, and antagonism to some phytopathogens. Teosinte is the grass plant recognized as the progenitor of modern maize, domesticated by pre-Hispanic civilizations around 9,000 years ago. Three teosinte species are recognized: Zea diploperennis, Zea perennis, and Zea mays. In this work, the bacterial diversity of three species of Mexican teosinte seeds was explored by massive sequencing of 16S rRNA amplicons. Streptomyces, Acinetobacter, Olivibacter, Erwinia, Bacillus, Pseudomonas, Cellvibrio, Achromobacter, Devosia, Lysobacter, Sphingopyxis, Stenotrophomonas, Ochrobactrum, Delftia, Lactobacillus, among others, were the bacterial genera mainly represented. The bacterial alpha diversity in the seeds of Z. diploperennis was the highest, while the alpha diversity in Z. mays subsp. mexicana race was the lowest observed among the species and races. The Mexican teosintes analyzed had a core bacteriome of 38 bacterial genera, including several recognized plant growth promoters or fungal biocontrol agents such as Agrobacterium, Burkholderia, Erwinia, Lactobacillus, Ochrobactrum, Paenibacillus, Pseudomonas, Sphingomonas, Streptomyces, among other. Metabolic inference analysis by PICRUSt2 of bacterial genera showed several pathways related to plant growth promotion (PGP), biological control, and environmental adaptation. The implications of these findings are far-reaching, as they highlight the existence of an exceptional bacterial germplasm reservoir teeming with potential plant growth promotion bacteria (PGPB). This reserve holds the key to cultivating innovative bioinoculants and formidable fungal antagonistic strains, thereby paving the way for a more sustainable and eco-friendly approach to agriculture. Embracing these novel NGS-based techniques and understanding the profound impact of the vertical transference of microorganisms from seeds could revolutionize the future of agriculture and develop a new era of symbiotic harmony between plants and microbes.
RESUMO
Bacteria and archaea play a fundamental role in the biogeochemical cycles of organic matter, pollutants, and nutrients to maintain the trophic state of aquatic ecosystems. However, very little is known about the composition patterns of microbial communities in vertical distribution (water column) in freshwater lakes and their relationship with the physicochemical properties of water. "La Encantada" lake in the Lagunas de Montebello National Park (LMNP) is a site of interest due to the anthropogenic impact received and the little information about it. In this study, 3 sites were evaluated; samples were collected using 0-15 m deep water columns and analyzed using Illumina MiSeq sequencing technology based on the 16S rRNA gene. The physical parameters of pH, temperature, dissolved oxygen, electrolytic conductivity, and PO-4 were determined. The results revealed clear differences in the microbial composition of the water throughout the column; the most abundant phyla in bacterial communities were Proteobacteria (23.2%), Cyanobacteria (17.3%), and Bacteroidetes (17.2%), and for archaea were Crenarchaeota (35.9%) and Euryarchaeota (33.2%). PICRUSt metabolic inference analysis revealed that the main functional genes were related to cellular processes and biodegradation of xenobiotics, indicating an increasing trend of contaminants and residual discharges that may act as a precursor to alter microbial communities and stability of the lakes. At depths of 10 and 15 m, the microbial diversity was greater; likewise, the correlation between the physicochemical parameters and the microbial communities at the genus level showed that Chlorobaculum, Desulfomonile, and Candidatus Xiphinematobacter were favored by an increase in dissolved phosphates and by the decrease in pH and temperature. These results highlight that the microbial communities exhibit variation in their composition due to the effect of depth and physicochemical parameters, which could play a role as biological factors in the trophic states of a lake.
Assuntos
Archaea , Chlorobi , Archaea/genética , Lagos , Ecossistema , México , RNA Ribossômico 16S , Bactérias/genética , ÁguaRESUMO
Magnusiomyces capitatus (also denominated "Geotrichum capitatum" and "the teleomorph stage of Saprochaete capitata") mainly affects immunocompromised patients with hematological malignancies in rare cases of invasive fungal infections (IFIs). Few cases have been reported for pediatric patients with acute lymphoblastic leukemia (ALL), in part because conventional diagnostic methods do not consistently detect M. capitatus in infections. The current contribution describes a systemic infection in a 15-year-old female diagnosed with ALL. She arrived at the Children's Hospital of Mexico City with a fever and neutropenia and developed symptoms of septic shock 4 days later. M. capitatus ENCB-HI-834, the causal agent, was isolated from the patient's blood, urine, bile, and peritoneal fluid samples. It was identified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and a phylogenetic reconstruction using internal transcribed spacer (ITS) and 28S ribosomal sequences. The phylogenetic sequence of M. capitatus ENCB-HI-834 clustered with other M. capitatus-type strains with a 100% identity. In vitro antifungal testing, conducted with the Sensititre YeastOne susceptibility system, found the following minimum inhibitory concentration (MIC) values (µg/mL): posaconazole 0.25, amphotericin B 1.0, fluconazole > 8.0, itraconazole 0.25, ketoconazole 0.5, 5-flucytosine ≤ 0.06, voriconazole 0.25, and caspofungin > 16.0. No clinical breakpoints have been defined for M. capitatus. This is the first clinical case reported in Mexico of an IFI caused by M. capitatus in a pediatric patient with ALL. It emphasizes the importance of close monitoring for a timely and accurate diagnosis of neutropenia-related IFIs to determine the proper treatment with antibiotics, antifungals, and chemotherapy for instance including children with ALL.
RESUMO
Autophagy (macroautophagy) is a survival and virulence mechanism of different eukaryotic pathogens. Autophagosomes sequester cytosolic material and organelles, then fuse with or enter into the vacuole or lysosome (the lytic compartment of most fungal/plant cells and many animal cells, respectively). Subsequent degradation of cargoes delivered to the vacuole via autophagy and endocytosis maintains cellular homeostasis and survival in conditions of stress, cellular differentiation, and development. PrA and PrB are vacuolar aspartyl and serine endoproteases, respectively, that participate in the autophagy of fungi and contribute to the pathogenicity of phytopathogens. Whereas the levels of vacuolar proteases are regulated by the expression of the genes encoding them (e.g., PEP4 for PrA and PRB1 for PrB), their activity is governed by endogenous inhibitors. The aim of the current contribution is to review the main characteristics, regulation, and role of vacuolar soluble endoproteases and Atg proteins in the process of autophagy and the pathogenesis of three fungal phytopathogens: Ustilago maydis, Magnaporthe oryzae, and Alternaria alternata. Aspartyl and serine proteases are known to participate in autophagy in these fungi by degrading autophagic bodies. However, the gene responsible for encoding the vacuolar serine protease of U. maydis has yet to be identified. Based on in silico analysis, this U. maydis gene is proposed to be orthologous to the Saccharomyces cerevisiae genes PRB1 and PBI2, known to encode the principal protease involved in the degradation of autophagic bodies and its inhibitor, respectively. In fungi that interact with plants, whether phytopathogenic or mycorrhizal, autophagy is a conserved cellular degradation process regulated through the TOR, PKA, and SNF1 pathways by ATG proteins and vacuolar proteases. Autophagy plays a preponderant role in the recycling of cell components as well as in the fungus-plant interaction.
RESUMO
BACKGROUND: A great number of studies have shown that the distribution of microorganisms in the soil is not random, but that their abundance changes along environmental gradients (spatial patterns). The present study examined the spatial variability of the physicochemical characteristics of an extreme alkaline saline soil and how they controlled the archaeal and bacterial communities so as to determine the main spatial community drivers. METHODS: The archaeal and bacterial community structure, and soil characteristics were determined at 13 points along a 211 m transect in the former lake Texcoco. Geostatistical techniques were used to describe spatial patterns of the microbial community and soil characteristics and determine soil properties that defined the prokaryotic community structure. RESULTS: A high variability in electrolytic conductivity (EC) and water content (WC) was found. Euryarchaeota dominated Archaea, except when the EC was low. Proteobacteria, Bacteroidetes and Actinobacteria were the dominant bacterial phyla independent of large variations in certain soil characteristics. Multivariate analysis showed that soil WC affected the archaeal community structure and a geostatistical analysis found that variation in the relative abundance of Euryarchaeota was controlled by EC. The bacterial alpha diversity was less controlled by soil characteristics at the scale of this study than the archaeal alpha diversity. DISCUSSION: Results indicated that WC and EC played a major role in driving the microbial communities distribution and scale and sampling strategies were important to define spatial patterns.
RESUMO
Dendroctonus bark beetles are a worldwide significant pest of conifers. This genus comprises 20 species found in North and Central America, and Eurasia. Several studies have documented the microbiota associated with these bark beetles, but little is known regarding how the gut bacterial communities change across host range distribution. We use pyrosequencing to characterize the gut bacterial communities associated with six populations of Dendroctonus valens and D. mexicanus each across Mexico, determine the core bacteriome of both insects and infer the metabolic pathways of these communities with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to evaluate whether these routes are conserved across geographical locations. Our results show that the ß-diversity with UniFrac unweighted varies among locations of both bark beetles mainly due to absence/presence of some rare taxa. No association is found between the pairwise phylogenetic distance of bacterial communities and geographic distance. A strict intraspecific core bacteriome is determined for each bark beetle species, but these cores are different in composition and abundance. However, both bark beetles share the interspecific core bacteriome recorded previously for the Dendroctonus genus consisting of Enterobacter, Pantoea, Providencia, Pseudomonas, Rahnella, and Serratia. The predictions of metabolic pathways are the same in the different localities, suggesting that they are conserved through the geographical locations.
Assuntos
Bactérias/classificação , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Gorgulhos/microbiologia , Animais , Bactérias/genética , DNA Bacteriano/análise , Trato Gastrointestinal/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Redes e Vias Metabólicas , México , FilogeniaRESUMO
Dendroctonus bark beetles comprise 20 taxonomically recognized species, which are one of the most destructive pine forest pests in North and Central America, and Eurasia. The aims of this study were to characterize the gut bacterial diversity, to determine the core bacteriome and to explore the ecological association between these bacteria and bark beetles. A total of five bacterial phyla were identified in the gut of 13 Dendroctonus species; Proteobacteria was the most abundant, followed by Firmicutes, Fusobacteria, Actinobacteria and Deinococcus-Thermus. The α-diversity was low as demonstrated in previous studies and significant differences in ß-diversity were observed. The core bacteriome was composed of Enterobacter, Pantoea, Pseudomonas, Rahnella, Raoultella, and Serratia. The tanglegram between bacteria and bark beetles suggests that members of bacterial community are acquired from the environment, possibly from the host tree. These findings improve the knowledge about the bacterial community composition, and provide the bases to study the metabolic functions of these bacteria, as well as their interaction with these bark beetles.
Assuntos
Biodiversidade , Evolução Biológica , Microbioma Gastrointestinal , Gorgulhos/microbiologia , Animais , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de RNARESUMO
Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect's life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in ß-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions.