Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540846

RESUMO

Certain naturally occurring volatile organic compounds are able to mitigate food spoilage caused by microbial growth. Their considerable vapor pressure enables them to create an antimicrobial atmosphere within a package, and this property can be used for the development of active food-packaging technologies. The volatility of these molecules, however, makes their stabilization difficult and limits their effectiveness. Whilst much research is being undertaken on the use of natural antimicrobial volatiles for inhibiting microbial growth in food, less attention has been paid to the design of controlled-release mechanisms that permit the efficient application of these compounds. Most studies to date either spray the volatile directly onto the fresh product, immerse it in a solution containing the volatile, or embed the volatile in a paper disc to create a vapor in the headspace of a package. More sophisticated alternatives would be delivery systems for the sustained release of volatiles into the package headspace. Such systems are based on the encapsulation of a volatile in organic or inorganic matrices (cyclodextrins, electrospun non-wovens, polymer films, micelles, molecular frameworks, etc.). However, most of these devices lack an efficient triggering mechanism for the release of the volatile; most are activated by humidity. All of these techniques are revised in the present work, and the most recent and innovative methods for entrapping and releasing volatiles based on reversible covalent bonds are also discussed.

2.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959768

RESUMO

Biopolymers based on plant and animal proteins are interesting alternatives in the development of films with future prospects as food packaging. Considering that in recent years there has been an increasing interest in the valorization of agro-industrial residues and by-products and that the blending of polymers can lead to materials with improved properties, in this work, keratin-rich feather fibers and gliadins were blended at different ratios in order to develop sustainable and biodegradable films. Control gliadin G100, feather F100 films, and their blends at 3:1 (G75F25), 2:2 (G50F50), and 1:3 (G25F75) ratios were successfully developed through thermoprocessing. The physical properties were differentiated as a function of the concentration of both polymeric matrices. Although gliadins showed higher hydrophilicity as confirmed by their highest swelling degree, films with high gliadin ratios exhibited lower water vapor permeability values at low and medium relative humidities. On the other hand, the feather fiber-based films displayed the highest Young's modulus values and provided an oxygen barrier to the blends, principally at the highest relative humidity. In conclusion, the blend of these protein-based polymers at different ratio resulted in interesting composites whose physical properties could be adjusted.


Assuntos
Gliadina , Queratinas , Animais , Gliadina/química , Plumas , Biopolímeros , Polímeros/química
3.
Dalton Trans ; 52(47): 17993-17999, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37982665

RESUMO

In this work, two ZIF-8-based biocomposites were obtained by entrapping the biomolecules benzaldehyde and methyl anthranilate via direct impregnation with fast encapsulation kinetics and high molecule payloads were achieved. The obtained biocomposites exhibit an enhanced antifungal activity against Penicilium expansum after integration in biopolymeric zein films in comparison with the action of free molecules, making these biomaterials promising candidates for food preservation and packaging applications.


Assuntos
Antifúngicos , Embalagem de Alimentos , Antifúngicos/farmacologia , Benzaldeídos
4.
Polymers (Basel) ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37835948

RESUMO

Oxygen scavengers are valuable active packaging systems because several types of food deterioration processes are initiated by oxygen. Although the incorporation of oxygen scavenger agents into the polymeric matrices has been the trend in recent years, the release of volatile organic compounds (VOC) as a result of the reaction between oxygen and oxygen scavenger substances is an issue to take into account. This is the case of an oxygen scavenger based on a trans-polyoctenamer rubber (TOR). In this work, the design of an oxygen scavenger multilayer system was carried out considering the selection of appropriate adsorbents of VOCs to the proposed layer structure. Firstly, the retention of some representative organic compounds by several adsorbent substances, such as zeolites, silicas, cyclodextrins and polymers, was studied in order to select those with the best performances. A hydrophilic silica and an odor-adsorbing agent based on zinc ricinoleate were the selected adsorbing agents. The principal VOCs released from TOR-containing films were carefully identified, and their retention first by the pure adsorbents, and then by polyethylene incorporated with the selected compounds was quantified. Detected concentrations decreased by 10- to 100-fold, depending on the VOC.

5.
Food Chem ; 403: 134292, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166926

RESUMO

Antimicrobial food grade hydroxybenzaldehyde derivatives were immobilized on the surface of chitosan films by means of reversible Schiff bases. Spectroscopy and elemental analysis evidenced the different ability of the aldehydes to form Schiff bases with chitosan. Chitosan films modified with Schiff bases of aldehydes exerted antimicrobial properties against E. coli under mild acidic environments. The efficacy of the films lied on the reversibility of synthetized imine bonds and release of the aldehydes which was promoted in mildly acid aqueous solutions. Besides acidity, imine bond reversibility depended on the chemical structure of the aldehyde covalently bonded. Films carrying salicylaldehyde presented the highest in vitro antimicrobial performance and thus, they were chosen to evaluate their effectivity in inhibiting E. coli proliferation in freshly-squeezed carrot-orange juice. Films were successfully activated by the acid environment of the juice and reduced the population of the inoculated pathogen. Salicylaldehyde migrated to the juice did not exert toxic effects on Caco-2 cells.


Assuntos
Anti-Infecciosos , Quitosana , Humanos , Bases de Schiff/farmacologia , Bases de Schiff/química , Quitosana/farmacologia , Quitosana/química , Escherichia coli , Células CACO-2 , Aldeídos/farmacologia , Aldeídos/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Concentração de Íons de Hidrogênio
6.
Polymers (Basel) ; 14(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36015660

RESUMO

Antimicrobial packaging has emerged as an efficient technology to improve the stability of food products. In this study, new formulations based on ethylene vinyl alcohol (EVOH) copolymer were developed by incorporating the volatile methyl anthranilate (MA) at different concentrations as antifungal compound to obtain active films for food packaging. To this end, a twin-screw extruder with a specifically designed screw configuration was employed to produce films at pilot scale. The quantification analyses of MA in the films showed a high retention capacity. Then, the morphological, optical, thermal, mechanical and water vapour barrier performance, as well as the antifungal activity in vitro of the active films, were evaluated. The presence of MA did not affect the transparency or the thermal stability of EVOH-based films, but decreased the glass transition temperature of the copolymer, indicating a plasticizing effect, which was confirmed by an increase in the elongation at break values of the films. Because of the additive-induced plasticization over EVOH, the water vapour permeability slightly increased at 33% and 75% relative humidity values. Finally, the evaluation of the antifungal activity in vitro of the active films containing methyl anthranilate showed a great effectiveness against P. expansum and B. cinerea, demonstrating the potential applicability of the developed films for active food packaging.

7.
ACS Appl Mater Interfaces ; 14(8): 10758-10768, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179870

RESUMO

The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal-organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria innocua due to a triggered two-step carvacrol release from films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction between MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge-transfer process between the metallic MOF counterpart and carvacrol upon certain chemical stimuli. During this process, the preferred carvacrol binding site was monitored by infrared, Mössbauer, and electron paramagnetic resonance spectroscopies, and the results are supported by theoretical calculations.


Assuntos
Estruturas Metalorgânicas , Antibacterianos/farmacologia , Cimenos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Oxirredução
8.
Foods ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34574274

RESUMO

Strawberries are valuable because of their nutritional value, but they are also highly perishable fruits. Fungal decay is the overriding factor that alters the overall quality of fresh strawberries. Because no hygienic treatments to reduce the initial microbial load are feasible, molds develop during postharvest when using conventional packaging. In this study, an antifungal packaging system for strawberries was developed to improve safety and quality. Trans-2-hexenal (HXAL), a natural compound in strawberries, was incorporated into the modified atmosphere packaging (MAP) systems. Zero, 100, and 250 µL of HXAL were included in cellulosic pads and were covered with a polyamide coating to control its release. The pads were placed on the bottom of plastic trays; an amount of250 g of strawberries was added, flow packed in micro-perforated PP bags, and stored at 4 °C for 14 days. Fungal infection was monitored during the storage period, and the optical and textural properties of the strawberries were measured at days 0 and 14. Analysis of the package headspace was conducted to check for the HXAL concentration. HXAL was partially retained in the fruits and was converted into hexyl acetate and 2-hexen-1-ol acetate, but this was only measurably present in the headspace of the active systems. Mold growth was fully inhibited in active packaging although the strawberries were softer and darker than those in the control packages. The active package was not as efficient if the fruits were stored under thermal-abuse conditions (15 and 22 °C).

9.
Foods ; 10(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34359460

RESUMO

In this work, novel active films based on ethylene vinyl alcohol copolymer (EVOH) and cinnamaldehyde (CIN) were successfully obtained employing a hybrid technique consisting of a two-step protocol involving the preparation of a polymeric EVOH-CIN masterbatch by solvent-casting for its further utilization in the preparation of bioactive EVOH-based films by melt extrusion processing. The influence of CIN over the EVOH matrix was studied in terms of optical, morphological, thermal, and mechanical properties. Optically transparent films were obtained and the incorporation of cinnamaldehyde resulted in yellow-colored films, producing a blocking effect in the UV region. A decrease in the glass transition temperature was observed in the formulations containing cinnamaldehyde, indicating a plasticizing effect. This phenomenon was confirmed by an increase in the elongation at break values of the extruded films. Results from thermogravimetric analysis determined a slight decrease in the thermal stability of EVOH provoked by the vaporization of the bioactive compound. Bioactive properties of the films were also studied; the presence of residual cinnamaldehyde in EVOH after being subjected to an extrusion process conferred some radical scavenging activity determined by the DPPH assay whereas films were able to exert antifungal activity in vapor phase against Penicillium expansum. Therefore, the present work shows the potential of the hybrid technique employed in this study for the preparation of bioactive films by a ready industrial process technology for food packaging applications.

10.
Toxins (Basel) ; 13(6)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199507

RESUMO

Wild yeasts isolated from the surface of apples were screened for antagonistic activity against Penicillium expansum, the main producer of the mycotoxin patulin. Three antagonistic yeasts (Y33, Y29 and Y24) from a total of 90 were found to inhibit P. expansum growth. Identification by ITS region sequence and characterization showed that three selected isolates of yeast should be different strains of Metschnikowia pulcherrima. Several concentrations of the selected yeasts were used to study their in vitro antifungal effectivity against P. expansum on Petri dishes (plates with 63.6 cm2 surface) whereas their potential activity on patulin reduction was studied in liquid medium. Finally, the BCA that had the best in vitro antifungal capacity against P. and the best patulin degradation capacity was selected to be assessed directly on apples. All the selected strains demonstrated antifungal activity in vitro but the most efficient was the strain Y29. Isolated strains were able to reduce patulin content in liquid medium, Y29 being the only strain that completely reduced patulin levels within 120 h. The application of Y29 as biocontrol agent on the surface of apples inoculated with P. expansum, inhibited fungal growth and patulin production during storage. Therefore, the results shown that this yeast strain could be used for the reduction of P. expansum and its mycotoxin in apples or apple-based products by adapting the procedure application.


Assuntos
Agentes de Controle Biológico , Frutas/microbiologia , Malus/microbiologia , Metschnikowia/isolamento & purificação , Patulina/metabolismo , Penicillium/crescimento & desenvolvimento , Frutas/química , Malus/química , Metschnikowia/metabolismo , Patulina/análise , Doenças das Plantas/prevenção & controle
11.
Food Chem ; 357: 129838, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33915470

RESUMO

This study describes the synthesis and reversibility of Schiff bases from chitosan and bioactive compounds, and their application in the antifungal packaging of fruit. Imine bonds between primary amine groups of chitosan and carbonyl groups of antifungal aldehydes were synthesised and their reversibility was assayed in an aqueous medium under different acidic conditions. The mechanism of action of the dynamers is based on the hydrolysis of imine bond and the release of the active agent. The new films were effective at inhibiting the growth of Penicillium expansum and Botrytis cinerea, and their effectivity depended on the degree of hydrolysis achieved which was greater when the bonds were hydrolysed in a mild acidic medium. A double bottom cylindrical tray was used for the responsive antimicrobial packaging of blackberries. The package extended shelf-life of berries from 3 to 12 days without causing phytotoxic effects on the fruit being safe for human consumption.

12.
Polymers (Basel) ; 13(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498500

RESUMO

The inhibitory and bactericidal capacity of Listex P100 bacteriophage has been studied against different concentrations of Listeria monocytogenes in stationary and exponential phases. Three different matrices were employed to developed films incorporating Listex P100: (1) sodium caseinate, (2) sodium alginate mixed with gelatin, and (3) polyvinyl alcohol (PVOH). All the films were successfully developed by casting at room temperature. These active biodegradable films were optical, structural, and thermally characterized, and their antimicrobial capacities against L. monocytogenes were studied. The incorporation of phages did not affect the morphology, colour, opacity, and thermal stability of polymers. The antimicrobial analysis revealed the bacteriophage presented a high antimicrobial capacity against L. monocytogenes in the stationary phase (4.40 and 6.19 log reduction values or bactericide effect depending on the initial inoculum of the pathogen). Developed films showed antimicrobial capacity close to 1 log after 24 h of incubation at 30 °C. The effectiveness of PVOH films was greater under refrigeration conditions, reaching 2 log reduction after eight days of incubation. The use of these films as a coating in a food or as part of a packaging could improve food safety against the growth of pathogenic microorganisms such as Listeria monocytogenes.

13.
Int J Food Microbiol ; 339: 109007, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33341684

RESUMO

Cast films obtained from polyvinyl alcohol (PVOH) blended with casein hydrolysates (HCas) in a weight ratio of 1:1 were employed to carry nisin-producing L. lactis and phytic acid in order to broaden the antimicrobial spectrum of L. lactis to Gram-positive and Gram-negative spoilage and pathogen bacteria. For this purpose, the effect of the antimicrobial activity of various film formulations and combinations of films on the growth of E. coli at 37 °C for 24 h was studied. The film system that showed antimicrobial activity against Gram-negative bacteria consisted of phytic acid and L. lactis incorporated in separate films. When the active agents were in the same film the viability of L. lactis decreased considerably and it did not exert antimicrobial activity against the bacterium. Therefore, the combination of L. lactis and phytic acid in separate films was chosen as the reliable system, and the effect of its activity on the growth of Gram-negative bacteria (E. coli, Salmonella enterica, and Pseudomonas fluorescens) and Gram-positive bacteria (Listeria monocytogenes) in liquid culture medium was tested at refrigeration temperature (4 °C), and with simulated breaks in the cold chain (14 °C and 24 °C). The survival of L. lactis in coexistence with these bacteria was also studied. The film system exerted an antimicrobial effect against the Gram-negative bacteria tested, and the activity depended on the bacteria and the temperature assayed. With regard to the antimicrobial activity against L. monocytogenes, phytic acid improved the antimicrobial capacity of L.lactis. The survival of L. lactis was maintained at 7-8 log (CFU/mL) culture in liquid medium throughout the storage period. The films developed were intended to be used as coatings in the design of a double-sided active bag for a non-fermented dairy product. The bags were filled with homemade preservative-free pastry cream, and the microbiological shelf life and evolution of pH of the packaged ready-to-eat food stored at 4 °C was studied for 20 days. The results showed a reduction in the growth of spoilage bacteria and therefore an increase in the shelf life of the packaged product. The films developed could be applied in the design of packages for perishable dairy foods in order to increase their microbiological shelf life.


Assuntos
Microbiologia de Alimentos/métodos , Embalagem de Alimentos/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Lactococcus lactis/metabolismo , Nisina/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Contagem de Colônia Microbiana , Bactérias Gram-Positivas/efeitos dos fármacos , Lactococcus lactis/crescimento & desenvolvimento , Nisina/metabolismo , Álcool de Polivinil/química , Refrigeração
14.
Polymers (Basel) ; 13(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375327

RESUMO

In this work, antimicrobial and antioxidant films based on ethylene vinyl alcohol (EVOH) copolymer containing low amounts of ferulic acid (FA) were successfully developed by melt extrusion. Optically transparent films were obtained, and the presence of FA provided some UV blocking effect. The characterization of the thermal and barrier properties of the developed films showed that the addition of FA improved the thermal stability, decreased the glass transition temperature (Tg) and increased the water vapor and oxygen transmission rates when ferulic acid was loaded above 0.5 wt.%, associated with its plasticizing effect. Mechanical characterization confirmed the plasticizing effect by an increase in the elongation at break values while no significant differences were observed in Young's modulus and tensile strength. Significant antioxidant activity of all active films exposed to two food simulants, 10% ethanol and 95% ethanol, was also confirmed using the 2,2-diphenyl-1-pricylhydrazyl (DPPH) free radical scavenging method, indicating that FA conserved its well-known antioxidant properties after melt-processing. Finally, EVOH-FA samples presented antibacterial activity in vitro against Escherichia coli and Staphylococcus aureus, thus showing the potential of ferulic acid as bioactive compound to be used in extrusion processing for active packaging applications.

15.
Int J Food Microbiol ; 322: 108545, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32109681

RESUMO

PVOH-based polymer matrices in the form of films were evaluated as carriers of living Lactococcus lactis subsp. Lactis. These lactic acid bacteria are capable of producing nisin, which is an effective antilisterial peptide. A low percentage (1:0.125 w/w) of yeast extract, gelatin, sodium caseinate, gelatin, or casein hydrolysates was incorporated in PVOH matrices with the aim of increasing the viability of bacteria in the film. The films were obtained by casting after incorporating L. lactis. Then they were evaluated for antilisterial activity in liquid medium at 37 °C for 24 h, and also at 4 °C for 21 days in order to simulate the storage of liquid foods in refrigeration conditions. The survival of the lactic acid bacteria was also evaluated at both temperatures during the experiment. L. lactis remained viable in all the films tested at 37 and 4 °C. The antimicrobial activity of the films was greater at 4 °C than at 37 °C. With regard to the effect of the film composition, the activity of the films was higher when protein hydrolysates and sodium caseinate were incorporated in the formulation. Films supplemented with protein hydrolysates or sodium caseinate inhibited growth of the pathogen during the 21 days of storage at 4 °C. At 37 °C, after 24 h the films had slowed the growth of the inoculated pathogen by between 2 and 4 log CFU/mL. Finally, as the films developed are intended to be used in the design of active packaging of foods, they were tested in pasteurized milk inoculated with 4 log CFU/mL of Listeria monocytogenes and stored at 4 °C for 21 days. The pathogen began to grow after the second day of storage with or without film, but when the films were added to the medium the growth of the pathogen was slowed down, without reaching >6 log CFU, whereas the control reached a maximum growth of 8.5 log CFU. The pH of the milk was monitored throughout the experiment, and it decreased with time. This was due to the generation of organic acids by the lactic bacteria. Buffering the food stabilized the pH without modifying the activity of the films. Thus, the current study shows that PVOH films supplemented with nutrients can act as carriers of L. lactis, and they can help to increase the safety of refrigerated dairy beverages and sauces.


Assuntos
Conservação de Alimentos/métodos , Lactobacillales/fisiologia , Listeria monocytogenes/crescimento & desenvolvimento , Leite/microbiologia , Álcool de Polivinil , Animais , Antibacterianos/metabolismo , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Conservantes de Alimentos/metabolismo , Lactobacillales/química , Lactobacillales/metabolismo , Lactococcus lactis/química , Lactococcus lactis/metabolismo , Lactococcus lactis/fisiologia , Nisina/metabolismo , Proteínas/química , Refrigeração
16.
Sensors (Basel) ; 19(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661907

RESUMO

A chromatic sensor has been designed for the detection of oxygen in package headspace. The sensor is based on the redox change of methylene blue (MB) to its leuco form. Its formulation includes the pigment, glycerol, as a sacrificial electron donor, TiO2, as a photocatalyst and ethylene-vinyl alcohol copolymer (EVOH), as a structural polymer matrix. The final sensor design that allows its manufacture by conventional printing and laminating technologies consists of the sensing polymer matrix (MB-EVOH) sandwiched in a suitable transparent multilayer structure. The outer layers protect the sensor from the external atmosphere and allow visualization of the colour. The inner layer is sufficiently opaque to facilitate sensor reading from the outside, is thick enough to avoid direct contact with food (functional barrier), and is oxygen-permeable to expose the sensing material to the internal package atmosphere. In the absence of oxygen, the sensor becomes white by irradiation with halogen lamps in less than 60 s. All components are substances permitted for food contact except the pigment, but specific migration analysis showed no trace of migration thanks to the functional barrier included in the design.

17.
Int J Food Microbiol ; 306: 108272, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31376617

RESUMO

In this study, zein coatings containing Lauroyl-l-arginine ethyl ester monohydrochloride (LAE) were developed to be applied on polypropylene films and manufacture an active food packaging. The concentration of LAE and the addition of a suitable plasticizer (glycerol or oleic acid (OA)) were the main variables considered. Active plasticized zein films, with glycerol or oleic acid were characterized in terms of release kinetics, mechanical, barrier, optical, and antimicrobial properties. Results showed that active agent concentration, (5 and 10%), had no-significant effect on mechanical and WVP properties of the plasticized films. Films plasticized with OA presented greater water resistance, UV-light opacity, and water barrier properties than glycerol-plasticized films. On the contrary, the latter had better antimicrobial properties. The analysis of LAE release kinetics from films to different food simulants revealed different behaviours, depending on both film formulation and food simulant. Despite the lower water resistance of coatings containing glycerol, bags based on polypropylene/glycerol plasticized zein containing 10% of LAE presented a great antimicrobial activity in tests with chicken soup (real food system) contaminated with pathogen bacteria, concretely, the films showed 3.21 Log reduction against Listeria monocytogenes and 3.07 log reductions against Escherichia coli. These results suggest a promising strategy on the use of LAE-containing zein in active food packaging to control foodborne pathogens.


Assuntos
Antibacterianos/farmacologia , Arginina/análogos & derivados , Escherichia coli/crescimento & desenvolvimento , Embalagem de Alimentos/métodos , Listeria monocytogenes/crescimento & desenvolvimento , Zeína/farmacologia , Animais , Arginina/farmacologia , Galinhas , Escherichia coli/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Água
18.
Int J Food Microbiol ; 290: 42-48, 2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30292678

RESUMO

The aim of the present work was the development of antimicrobial films containing garlic extract to be applied as active packaging for preservative-free sliced pan loaf, with the goal of extending its shelf-life. First, the antimicrobial capacity of garlic extract, a compound used as active agent, was tested against Penicillium expansum by the disc diffusion method. The extract showed high antimicrobial activity, 0.1 µL per Petri dish being the minimum inhibitory amount, and 0.25 µL the minimum fungicidal amount. Bread aroma was also used to mask the pungent odour of garlic and it was confirmed to have no antimicrobial activity. Subsequently, polyethylene (PE) aqueous emulsion and ethylene-vinyl alcohol copolymer (EVOH) and zein hydroalcoholic solutions containing 0.25 and 0.5% (w/w per dry polymer) of garlic extract and bread aroma were used to coat PE films, producing PE/PE, PE/EVOH and PE/zein active films. The antimicrobial capacity of the films was studied in vitro against Penicillium expansum, and in vivo with natural sliced bread. The results showed that all the films presented some antimicrobial activity, PE film coated with zein containing 0.5% of garlic extract and bread aroma being the film presenting the best results, maintaining bread free of mould infection for 30 days. Sensory tests showed that the addition of 1% of bread aroma improved the sensory experience of consumers and also revealed good purchase intention.


Assuntos
Antifúngicos/farmacologia , Pão/microbiologia , Embalagem de Alimentos/métodos , Embalagem de Alimentos/normas , Alho , Penicillium/efeitos dos fármacos , Odorantes/análise , Polietileno/química , Polietileno/farmacologia , Polivinil/química , Polivinil/farmacologia , Zeína/química , Zeína/farmacologia
19.
Nanomaterials (Basel) ; 8(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360427

RESUMO

This work is a proof of concept for the design of active packaging materials based on the anchorage of gated mesoporous silica particles with a pH triggering mechanism to a packaging film surface. Mesoporous silica micro- and nanoparticles were loaded with rhodamine B and functionalized with N-(3-trimethoxysilylpropyl)diethylenetriamine. This simple system allows regulation of cargo delivery as a function of the pH of the environment. In parallel, poly(ethylene-co-vinyl alcohol) films, EVOH 32 and EVOH 44, were ultraviolet (UV) irradiated to convert hydroxyl moieties of the polymer chains into ⁻COOH functional groups. The highest COOH surface concentration was obtained for EVOH 32 after 15 min of UV irradiation. Anchoring of the gated mesoporous particles to the films was carried out successfully at pH 3 and pH 5. Mesoporous particles were distributed homogeneously throughout the film surface and in greater concentration for the EVOH 32 films. Films with the anchored particles were exposed to two liquid media simulating acidic food and neutral food. The films released the cargo at neutral pH but kept the dye locked at acidic pH. The best results were obtained for EVOH 32 irradiated for 15 min, treated for particle attachment at pH 3, and with mesoporous silica nanoparticles. This opens the possibility of designing active materials loaded with antimicrobials, antioxidants, or aromatic compounds, which are released when the pH of the product approaches neutrality, as occurs, for instance, with the release of biogenic amines from fresh food products.

20.
Carbohydr Polym ; 151: 1193-1202, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474670

RESUMO

Chitosan films filled with hydroxypropyl-ß-cyclodextrin at a 1:1 weight ratio and plasticized with 35 or 50% glycerol or 35% propylene glycol were prepared by casting and conditioned at different relative humidities to achieve a similar water content. Sorption properties of the films for various monoterpene compounds with phenolic, or with linear or cyclohexyl alcohol structures were studied after their immersion in the volatile liquids. In general, the films presented a considerable capacity to retain monophenolic compounds, with sorption values ranging from 455% for meta-cumenol to 193% for guaiacol, for chitosan films with the same formulation. These values were two orders of magnitude higher than those of compounds without the phenol group. The affinity for monophenolic compounds decreased in films plasticized with hydrophilic propylene glycol, whereas no changes were observed in the retention of non-phenolic monoterpenes. Replacement of chitosan with polyvinyl alcohol polymer considerably decreased the retention of monophenolic compounds, with the exception of isoeugenol. Finally, the antimicrobial activity of monoterpenes and films loaded with them was evaluated in vitro by the microatmosphere test against Escherichia coli and Staphylococcus aureus. The present study shows that hydroxypropyl-ß-cyclodextrin and the plasticization level achieved by hydrophilic films can be used to regulate loading capacity and sorption selectivity of naturally occurring antimicrobial compounds.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Álcoois/química , Glicerol/química , Interações Hidrofóbicas e Hidrofílicas , Monoterpenos/química , Polietilenoglicóis/química , Polímeros/química , Adsorção , Escherichia coli/efeitos dos fármacos , Micelas , Monoterpenos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA