Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(6): 4322-4345, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38457829

RESUMO

Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Fotoquímica , Química Farmacêutica/métodos , Descoberta de Drogas/métodos , Biologia
2.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350720

RESUMO

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Assuntos
Canais de Potássio , Prurido , Animais , Camundongos , Antipruriginosos/uso terapêutico , Histamina/metabolismo , Loxapina/uso terapêutico , Canais de Potássio/metabolismo , Prurido/tratamento farmacológico , Prurido/metabolismo
3.
ChemistryOpen ; 11(12): e202200252, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564354

RESUMO

A novel oxadiazolone-based method for the synthesis of 3-aminobenzisoxazoles by N-O bond formation and of 2-aminobenzoxazoles through a Tiemann-type rearrangement has been developed. The synthesis of these two pharmaceutically relevant heterocycles was realized by an unexplored retrosynthetic disconnection using a cyclic nitrenoid precursor-based strategy. The selective formation of the two isomers was significantly influenced by steric and electronic effects of substituents. However, tetrabutylammonium chloride (TBACl) efficiently promoted the Tiemann-type rearrangement over N-O bond formation. Control experiments indicate that deprotonation of the phenol induces both rearrangements.


Assuntos
Fenóis , Fenóis/química
4.
J Enzyme Inhib Med Chem ; 37(1): 1752-1764, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36124840

RESUMO

A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesised, and characterised. These novel compounds, which contain a benzimidazole subunit were evaluated for their inhibitory activity against sEH and FLAP. Molecular modelling tools were applied to analyse structure-activity relationships (SAR) on both targets and to predict solubility and gastrointestinal (GI) absorption. The most promising dual inhibitors of these series are 5a, 6b, and 6c.


Assuntos
Benzimidazóis , Epóxido Hidrolases , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Relação Estrutura-Atividade
5.
Biochem Pharmacol ; 204: 115191, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35907497

RESUMO

Focused compound libraries are well-established tools for hit identification in drug discovery and chemical probe development. We present the compilation and application of a focused screening library of fatty acid mimetics (FAMs), which are compounds designed to bind the orthosteric site of proteins that endogenously accommodate natural fatty acids and lipid metabolites. This set complies with chemical properties of FAM and was found suitable for use also in cellular setting. Several hits were retrieved in screening the focused library against diverse fatty acid binding targets including the enzymes soluble epoxide hydrolase (sEH) and leukotriene A4 hydrolase (LTA4H), the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), the carrier proteins fatty acid binding protein 4 and 5 (FABP4 and FABP5), as well as the G-protein coupled receptors leukotriene B4 receptor 1 (BLT1) and free-fatty acid receptor 1 (FFAR1). Thus, the focused FAM library is suitable to obtain chemical starting matter for fatty acid binding proteins and provides a valuable extension to available screening collections.


Assuntos
Epóxido Hidrolases , Ácidos Graxos , Epóxido Hidrolases/metabolismo , Proteínas de Ligação a Ácido Graxo , Ácidos Graxos/metabolismo , PPAR gama/metabolismo , Receptores do Leucotrieno B4/metabolismo , Receptor X Retinoide alfa/metabolismo
6.
J Org Chem ; 87(5): 3856-3862, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179025

RESUMO

3-Aminoindazoles are privileged scaffolds for bioactive drug-like molecules. In this study, a microwave-assisted cascade reaction for the synthesis of N-1 substituted 3-aminoindazoles with yields up to 81% has been developed. Starting from 3-(2-bromoaryl)-1,2,4-oxadiazol-5(4H)-ones, the reaction exhibits a broad substrate scope including anilines, aliphatic amines, and sulfonamides and bypasses selectivity issues between N-1 and 3-amino group. Furthermore, the Differential Scanning Fluorimetry screen of a kinase panel demonstrated the value of targeting N-1 substituted 3-aminoindazoles as kinase-biased fragments.


Assuntos
Aminas , Micro-Ondas , Aminas/química
7.
J Med Chem ; 65(3): 2023-2034, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34995452

RESUMO

The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor activated by 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT), which has been proposed as a promising therapeutic target for diabetic wound healing and gastrointestinal lesions. In this study, the rational design of a fluorescent probe based on the synthetic BLT2 agonist CAY10583 is described. The synthesis of several derivatives of CAY10583 coupled to fluorescein resulted in a traceable ligand suitable for different fluorescence-based techniques. An HTRF-based displacement assay (Tag-lite) on stably transfected CHO-K1 cells was developed to characterize binding properties of diverse BLT2 ligands. Highly specific binding to the BLT2 receptor was demonstrated in staining experiments on mouse skin tissue, and specific modulation of BLT2-induced cAMP signaling provided further evidence for receptor binding and ligand functionality. In conclusion, the fluorescent ligands developed in this study are suitable to investigate the pharmacology of BLT2 receptor ligands in a variety of assay systems.


Assuntos
Corantes Fluorescentes/química , Ligantes , Receptores do Leucotrieno B4/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Desenho de Fármacos , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Camundongos , Microscopia de Fluorescência , Ligação Proteica , Receptores do Leucotrieno B4/agonistas , Receptores do Leucotrieno B4/antagonistas & inibidores , Pele/metabolismo , Pele/patologia
8.
J Med Chem ; 64(23): 17259-17276, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818007

RESUMO

Polypharmaceutical regimens often impair treatment of patients with metabolic syndrome (MetS), a complex disease cluster, including obesity, hypertension, heart disease, and type II diabetes. Simultaneous targeting of soluble epoxide hydrolase (sEH) and peroxisome proliferator-activated receptor γ (PPARγ) synergistically counteracted MetS in various in vivo models, and dual sEH inhibitors/PPARγ agonists hold great potential to reduce the problems associated with polypharmacy in the context of MetS. However, full activation of PPARγ leads to fluid retention associated with edema and weight gain, while partial PPARγ agonists do not have these drawbacks. In this study, we designed a dual partial PPARγ agonist/sEH inhibitor using a structure-guided approach. Exhaustive structure-activity relationship studies lead to the successful optimization of the designed lead. Crystal structures of one representative compound with both targets revealed potential points for optimization. The optimized compounds exhibited favorable metabolic stability, toxicity, selectivity, and desirable activity in adipocytes and macrophages.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , PPAR gama/agonistas , Animais , Cristalografia por Raios X , Células HEK293 , Humanos , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Polimedicação , Ratos , Relação Estrutura-Atividade
9.
ACS Med Chem Lett ; 12(8): 1261-1266, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413955

RESUMO

Leuktriene B4 receptor 2 (BLT2) is a G-protein coupled receptor modulation of which is discussed to be a therapeutic option for healing of intestinal lesions. In this work, new BLT2 agonists were identified by a virtual screening of a repurposing library and in vitro assay of the most promising compounds. Irbesartan, an approved type-1 angiotensin II receptor (AT1) antagonist, was identified as a moderate BLT2 agonist. An initial SAR study on the irbesartan scaffold was performed resulting in the discovery of a new potent BLT2 agonist (8f, EC50 = 67.6 nM). Irbesartan and 8f were shown to promote proliferation of epithelial colon cells, an effect which was reversible by a BLT2 antagonist.

10.
Cells ; 10(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062826

RESUMO

Alkylglycerol monooxygenase (AGMO) is a tetrahydrobiopterin (BH4)-dependent enzyme with major expression in the liver and white adipose tissue that cleaves alkyl ether glycerolipids. The present study describes the disclosure and biological characterization of a candidate compound (Cp6), which inhibits AGMO with an IC50 of 30-100 µM and 5-20-fold preference of AGMO relative to other BH4-dependent enzymes, i.e., phenylalanine-hydroxylase and nitric oxide synthase. The viability and metabolic activity of mouse 3T3-L1 fibroblasts, HepG2 human hepatocytes and mouse RAW264.7 macrophages were not affected up to 10-fold of the IC50. However, Cp6 reversibly inhibited the differentiation of 3T3-L1 cells towards adipocytes, in which AGMO expression was upregulated upon differentiation. Cp6 reduced the accumulation of lipid droplets in adipocytes upon differentiation and in HepG2 cells exposed to free fatty acids. Cp6 also inhibited IL-4-driven differentiation of RAW264.7 macrophages towards M2-like macrophages, which serve as adipocyte progenitors in adipose tissue. Collectively, the data suggest that pharmacologic AGMO inhibition may affect lipid storage.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Oxigenases de Função Mista/antagonistas & inibidores , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Diferenciação Celular , Fibroblastos/metabolismo , Células Hep G2 , Humanos , Concentração Inibidora 50 , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
11.
ACS Med Chem Lett ; 12(4): 603-609, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33850605

RESUMO

The nsP3 macrodomain is a conserved protein interaction module that plays essential regulatory roles in the host immune response by recognizing and removing posttranslational ADP-ribosylation sites during SARS-CoV-2 infection. Thus targeting this protein domain may offer a therapeutic strategy to combat current and future virus pandemics. To assist inhibitor development efforts, we report here a comprehensive set of macrodomain crystal structures complexed with diverse naturally occurring nucleotides, small molecules, and nucleotide analogues including GS-441524 and its phosphorylated analogue, active metabolites of remdesivir. The presented data strengthen our understanding of the SARS-CoV-2 macrodomain structural plasticity and provide chemical starting points for future inhibitor development.

12.
J Med Chem ; 64(5): 2815-2828, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33620196

RESUMO

The metabolic syndrome (MetS) is a constellation of cardiovascular and metabolic symptoms involving insulin resistance, steatohepatitis, obesity, hypertension, and heart disease, and patients suffering from MetS often require polypharmaceutical treatment. PPARγ agonists are highly effective oral antidiabetics with great potential in MetS, which promote adipocyte browning and insulin sensitization. However, the application of PPARγ agonists in clinics is restricted by potential cardiovascular adverse events. We have previously demonstrated that the racemic dual sEH/PPARγ modulator RB394 (3) simultaneously improves all risk factors of MetS in vivo. In this study, we identify and characterize the eutomer of 3. We provide structural rationale for molecular recognition of the eutomer. Furthermore, we could show that the dual sEH/PPARγ modulator is able to promote adipocyte browning and simultaneously exhibits cardioprotective activity which underlines its exciting potential in treatment of MetS.


Assuntos
Adipócitos/efeitos dos fármacos , Benzamidas/farmacologia , Butiratos/farmacologia , Cardiotônicos/farmacologia , Epóxido Hidrolases/metabolismo , PPAR gama/agonistas , Animais , Benzamidas/síntese química , Butiratos/síntese química , Cardiotônicos/síntese química , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Estereoisomerismo
13.
J Med Chem ; 63(20): 11548-11572, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32946232

RESUMO

The first potent leukotriene B4 (LTB4) receptor type 2 (BLT2) agonists, endogenous 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT), and synthetic CAY10583 (CAY) have been recently described to accelerate wound healing by enhanced keratinocyte migration and indirect stimulation of fibroblast activity in diabetic rats. CAY represents a very valuable starting point for the development of novel wound-healing promoters. In this work, the first structure-activity relationship study for CAY scaffold-based BLT2 agonists is presented. The newly prepared derivatives showed promising in vitro wound-healing activity.


Assuntos
Desenvolvimento de Medicamentos/métodos , Queratinócitos/efeitos dos fármacos , Receptores do Leucotrieno B4/agonistas , Cicatrização/efeitos dos fármacos , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Células HaCaT , Células Hep G2 , Humanos , Queratinócitos/metabolismo , Estrutura Molecular , Receptores do Leucotrieno B4/genética , Relação Estrutura-Atividade , Cicatrização/fisiologia
14.
ChemMedChem ; 15(1): 50-67, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31670489

RESUMO

The nuclear farnesoid X receptor (FXR) and the enzyme soluble epoxide hydrolase (sEH) are validated molecular targets to treat metabolic disorders such as non-alcoholic steatohepatitis (NASH). Their simultaneous modulation in vivo has demonstrated a triad of anti-NASH effects and thus may generate synergistic efficacy. Here we report dual FXR activators/sEH inhibitors derived from the anti-asthma drug Zafirlukast. Systematic structural optimization of the scaffold has produced favorable dual potency on FXR and sEH while depleting the original cysteinyl leukotriene receptor antagonism of the lead drug. The resulting polypharmacological activity profile holds promise in the treatment of liver-related metabolic diseases.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/agonistas , Compostos de Tosil/química , Sítios de Ligação , Domínio Catalítico , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Indóis , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fenilcarbamatos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Relação Estrutura-Atividade , Sulfonamidas , Compostos de Tosil/metabolismo , Compostos de Tosil/farmacologia
15.
Bioorg Med Chem ; 27(21): 115082, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31548084

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) modulators have found wide application for the treatment of cancers, metabolic disorders and inflammatory diseases. Contrary to PPARγ agonists, PPARγ antagonists have been much less studied and although they have shown immunomodulatory effects, there is still no therapeutically useful PPARγ antagonist on the market. In contrast to non-competitive, irreversible inhibition caused by 2-chloro-5-nitrobenzanilide (GW9662), the recently described (E)-2-(5-((4-methoxy-2-(trifluoromethyl)quinolin-6-yl)methoxy)-2-((4-(trifluoromethyl)benzyl)oxy)-benzylidene)-hexanoic acid (MTTB, T-10017) is a promising prototype for a new class of PPARγ antagonists. It exhibits competitive antagonism against rosiglitazone mediated activation of PPARγ ligand binding domain (PPARγLBD) in a transactivation assay in HEK293T cells with an IC50 of 4.3 µM against 1 µM rosiglitazone. The aim of this study was to investigate the structure-activity relationships (SAR) of the MTTB scaffold focusing on improving its physicochemical properties. Through this optimization, 34 new derivatives were prepared and characterized. Two new potent compounds (T-10075 and T-10106) with much improved drug-like properties and promising pharmacokinetic profile were identified.


Assuntos
Cinamatos/farmacologia , PPAR gama/antagonistas & inibidores , Quinolinas/farmacologia , Animais , Cinamatos/síntese química , Cinamatos/farmacocinética , Células HEK293 , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/farmacocinética , Ratos , Rosiglitazona/farmacologia , Relação Estrutura-Atividade
16.
J Med Chem ; 62(18): 8443-8460, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31436984

RESUMO

The emerging pharmacological target soluble epoxide hydrolase (sEH) is a bifunctional enzyme exhibiting two different catalytic activities that are located in two distinct domains. Although the physiological role of the C-terminal hydrolase domain is well-investigated, little is known about its phosphatase activity, located in the N-terminal phosphatase domain of sEH (sEH-P). Herein we report the discovery and optimization of the first inhibitor of human and rat sEH-P that is applicable in vivo. X-ray structure analysis of the sEH phosphatase domain complexed with an inhibitor provides insights in the molecular basis of small-molecule sEH-P inhibition and helps to rationalize the structure-activity relationships. 4-(4-(3,4-Dichlorophenyl)-5-phenyloxazol-2-yl)butanoic acid (22b, SWE101) has an excellent pharmacokinetic and pharmacodynamic profile in rats and enables the investigation of the physiological and pathophysiological role of sEH-P in vivo.


Assuntos
Inibidores Enzimáticos/química , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/química , Animais , Sítios de Ligação , Domínio Catalítico , Desenho de Fármacos , Humanos , Ligantes , Masculino , Oxazóis/química , Monoéster Fosfórico Hidrolases/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Temperatura
17.
ACS Med Chem Lett ; 10(1): 62-66, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30655948

RESUMO

A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesized, and characterized by 1H NMR, 13C NMR, and elemental analysis. These novel compounds were biologically evaluated for their inhibitory activity against sEH and FLAP. Molecular modeling tools were applied to analyze structure-activity relationships (SAR) on both targets. Results show that even small modifications on the lead compound diflapolin markedly influence the inhibitory potential, especially on FLAP, suggesting very narrow SAR.

18.
Neuroscience ; 398: 158-170, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30537520

RESUMO

Peripheral diabetic neuropathy (PDN) manifests in 50-60% of type I and II diabetic patients and is the major cause of limb amputation. Adequate therapy for PDN is a current challenge. There are evidences that the activation of the P2X4 receptor (P2X4R) expressed on microglial cells of the central nervous system takes part in the development of neuropathic pain. However, there is an open question: Is P2X4R activation on dorsal root ganglia (DRG) involved in the development of neuropathic pain? To answer this question, this study verified the involvement of P2X4R expressed in DRG cells on diabetes-induced neuropathic mechanical hyperalgesia in rats. We found that intrathecal or ganglionar (L5-DRG) administration of a novel P2X4R antagonist (PSB-15417) or intrathecal administration of oligodeoxynucleotides (ODN)-antisense against the P2X4R reversed diabetes-induced neuropathic mechanical hyperalgesia. The DRG of the diabetic neuropathic rats showed an increase in P2X4R expression, and the DRG immunofluorescence suggested that P2X4R is expressed mainly in satellite glial cells (SGC). Finally, our study showed a functional expression of P2X4R in SGCs of the rat's DRG, because the P2X4R agonist BzATP elicits an increase in intracellular calcium concentration in SGCs, which was reduced by PSB-15417. These findings indicate that P2X4R activation in DRG is essential to diabetes-induced neuropathic mechanical hyperalgesia. Therefore, this purinergic receptor in DRG could be an interesting therapeutic target for quaternary P2X4R antagonists that do not cross the hematoencephalic barrier, for the control of neuropathic pain, preserving central nervous system functions.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/patologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Antagonistas do Receptor Purinérgico P2X , Distribuição Aleatória , Ratos Wistar , Tato
19.
J Med Chem ; 61(23): 10724-10738, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30480443

RESUMO

Intracellular elevation of E2 levels in bone by inhibition of 17ß hydroxysteroid dehydrogenase type 2 (17ß-HSD2) without affecting systemic E2 levels is an attractive approach for a targeted therapy against osteoporosis, a disease which is characterized by loss of bone mineral density. Previously identified inhibitor A shows high potency on human and mouse 17ß-HSD2, but poor pharmacokinetic properties when applied perorally in mice. A combinatorial chemistry approach was utilized to synthesize truncated derivatives of A, leading to highly potent compounds with activities in the low nanomolar to picomolar range. Compound 33, comparable to A in terms of inhibitor potency against both human and mouse enzymes, displays high in vitro metabolic stability in human and mouse liver S9 fraction as well as low toxicity and moderate hepatic CYP inhibition. Thus, compound 33 showed a highly improved peroral pharmacokinetic profile in comparison to A, making 33 a promising candidate for further development.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Estradiol Desidrogenases/antagonistas & inibidores , Osteoporose/tratamento farmacológico , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Camundongos , Solubilidade , Distribuição Tecidual , Água/química
20.
Bioorg Chem ; 80: 655-667, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059891

RESUMO

Spirocyclic 1-oxa-9-azaspiro[5.5]undecan-4-amine scaffold was explored as a basis for the design of potential inhibitors of soluble epoxide hydrolase (sEH). Synthesis and testing of the initial SAR-probing library followed by biochemical testing against sEH allowed nominating a racemic lead compound (±)-22. The latter showed remarkable (> 0.5 mM) solubility in aqueous phosphate buffer solution, unusually low (for sEH inhibitors) lipophilicity as confirmed by experimentally determined logD7.4 of 0.99, and an excellent oral bioavailability in mice (as well as other pharmacokinetic characteristics). Individual enantiomer profiling revealed that the inhibitory potency primarily resided with the dextrorotatory eutomer (+)-22 (IC50 4.99 ±â€¯0.18 nM). For the latter, a crystal structure of its complex with a C-terminal domain of sEH was obtained and resolved. These data fully validate (+)-22 as a new non-racemic advanced lead compound for further development as a potential therapeutic agent for use in such areas as cardiovascular disease, inflammation and pain.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Epóxido Hidrolases/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Proteínas Recombinantes/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA