Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(10): 12206-12221, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37339036

RESUMO

This paper proposes Panoptic Narrative Grounding, a spatially fine and general formulation of the natural language visual grounding problem. We establish an experimental framework for the study of this new task, including new ground truth and metrics. We propose PiGLET, a novel multi-modal Transformer architecture to tackle the Panoptic Narrative Grounding task, and to serve as a stepping stone for future work. We exploit the intrinsic semantic richness in an image by including panoptic categories, and we approach visual grounding at a fine-grained level using segmentations. In terms of ground truth, we propose an algorithm to automatically transfer Localized Narratives annotations to specific regions in the panoptic segmentations of the MS COCO dataset. PiGLET achieves a performance of 63.2 absolute Average Recall points. By leveraging the rich language information on the Panoptic Narrative Grounding benchmark on MS COCO, PiGLET obtains an improvement of 0.4 Panoptic Quality points over its base method on the panoptic segmentation task. Finally, we demonstrate the generalizability of our method to other natural language visual grounding problems such as Referring Expression Segmentation. PiGLET is competitive with previous state-of-the-art in RefCOCO, RefCOCO+ and RefCOCOg.

2.
Int J Comput Assist Radiol Surg ; 18(7): 1135-1142, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160580

RESUMO

PURPOSE: Recent advances in computer vision and machine learning have resulted in endoscopic video-based solutions for dense reconstruction of the anatomy. To effectively use these systems in surgical navigation, a reliable image-based technique is required to constantly track the endoscopic camera's position within the anatomy, despite frequent removal and re-insertion. In this work, we investigate the use of recent learning-based keypoint descriptors for six degree-of-freedom camera pose estimation in intraoperative endoscopic sequences and under changes in anatomy due to surgical resection. METHODS: Our method employs a dense structure from motion (SfM) reconstruction of the preoperative anatomy, obtained with a state-of-the-art patient-specific learning-based descriptor. During the reconstruction step, each estimated 3D point is associated with a descriptor. This information is employed in the intraoperative sequences to establish 2D-3D correspondences for Perspective-n-Point (PnP) camera pose estimation. We evaluate this method in six intraoperative sequences that include anatomical modifications obtained from two cadaveric subjects. RESULTS: Show that this approach led to translation and rotation errors of 3.9 mm and 0.2 radians, respectively, with 21.86% of localized cameras averaged over the six sequences. In comparison to an additional learning-based descriptor (HardNet++), the selected descriptor can achieve a better percentage of localized cameras with similar pose estimation performance. We further discussed potential error causes and limitations of the proposed approach. CONCLUSION: Patient-specific learning-based descriptors can relocalize images that are well distributed across the inspected anatomy, even where the anatomy is modified. However, camera relocalization in endoscopic sequences remains a persistently challenging problem, and future research is necessary to increase the robustness and accuracy of this technique.


Assuntos
Endoscopia , Cirurgia Assistida por Computador , Humanos , Endoscopia/métodos , Rotação
3.
Sci Rep ; 12(1): 8434, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589824

RESUMO

Drug Discovery is an active research area that demands great investments and generates low returns due to its inherent complexity and great costs. To identify potential therapeutic candidates more effectively, we propose protein-ligand with adversarial augmentations network (PLA-Net), a deep learning-based approach to predict target-ligand interactions. PLA-Net consists of a two-module deep graph convolutional network that considers ligands' and targets' most relevant chemical information, successfully combining them to find their binding capability. Moreover, we generate adversarial data augmentations that preserve relevant biological backgrounds and improve the interpretability of our model, highlighting the relevant substructures of the ligands reported to interact with the protein targets. Our experiments demonstrate that the joint ligand-target information and the adversarial augmentations significantly increase the interaction prediction performance. PLA-Net achieves 86.52% in mean average precision for 102 target proteins with perfect performance for 30 of them, in a curated version of actives as decoys dataset. Lastly, we accurately predict pharmacologically-relevant molecules when screening the ligands of ChEMBL and drug repurposing Hub datasets with the perfect-scoring targets.


Assuntos
Redes Neurais de Computação , Proteínas , Ligantes , Preparações Farmacêuticas , Poliésteres , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA