RESUMO
Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.
Assuntos
ATPases Associadas a Diversas Atividades Celulares , Colesterol , Lisossomos , Proteínas de Membrana , Mutação , Animais , Colesterol/metabolismo , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Drosophila , Membrana Celular/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismoRESUMO
Elevated urine bis(monoacylglycerol)phosphate (BMP) levels have been found in gain-of-kinase function LRRK2 G2019S mutation carriers. Here, we have expanded urine BMP analysis to other Parkinson's disease (PD) associated mutations and found them to be consistently elevated in carriers of LRRK2 G2019S and R1441G/C as well as VPS35 D620N mutations. Urine BMP levels are promising biomarkers for patient stratification and potentially target engagement in clinical trials of emerging targeted PD therapies.
RESUMO
Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer's disease.
RESUMO
Parkinson's disease (PD) is characterized by a great clinical heterogeneity. Nevertheless, the biological drivers of this heterogeneity have not been completely elucidated and are likely to be complex, arising from interactions between genetic, epigenetic, and environmental factors. Despite this heterogeneity, the clinical patterns of monogenic forms of PD have usually maintained a good clinical correlation with each mutation once a sufficient number of patients have been studied. Mutations in LRRK2 are the most commonly known genetic cause of autosomal dominant PD known to date. Furthermore, recent genome-wide association studies have revealed variations in LRRK2 as significant risk factors also for the development of sporadic PD. The LRRK2-R1441G mutation is especially frequent in the population of Basque ascent based on a possible founder effect, being responsible for almost 50% of cases of familial PD in our region, with a high penetrance. Curiously, Lewy bodies, considered the neuropathological hallmark of PD, are absent in a significant subset of LRRK2-PD cases. Indeed, these cases appear to be associated with a less aggressive primarily pure motor phenotype. The aim of our research is to examine the clinical phenotype of R1441G-PD patients, more homogeneous when we compare it with sporadic PD patients or with patients carrying other LRRK2 mutations, and reflect on the value of the observed correlation in the genetic forms of PD. The clinical heterogeneity of PD leads us to think that there may be as many different diseases as the number of people affected. Undoubtedly, genetics constitutes a relevant key player, as it may significantly influence the phenotype, with differences according to the mutation within the same gene, and not only in familial PD but also in sporadic forms. Thus, extending our knowledge regarding genetic forms of PD implies an expansion of knowledge regarding sporadic forms, and this may be relevant due to the future therapeutic implications of all forms of PD.