Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genesis ; 59(7-8): e23439, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34338433

RESUMO

Luminal valves of collecting lymphatic vessels are critical for maintaining unidirectional flow of lymph and their dysfunction underlies several forms of primary lymphedema. Here, we report on the generation of a transgenic mouse expressing the tamoxifen inducible CreERT2 under the control of Cldn11 promoter that allows, for the first time, selective and temporally controlled targeting of lymphatic valve endothelial cells. We show that within the vasculature CLDN11 is specifically expressed in lymphatic valves but is not required for their development as mice with a global loss of Cldn11 display normal valves in the mesentery. Tamoxifen treated Cldn11-CreERT2 mice also carrying a fluorescent Cre-reporter displayed reporter protein expression selectively in lymphatic valves and, to a lower degree, in venous valves. Analysis of developing vasculature further showed that Cldn11-CreERT2 -mediated recombination is induced during valve leaflet formation, and efficient labeling of valve endothelial cells was observed in mature valves. The Cldn11-CreERT2 mouse thus provides a valuable tool for functional studies of valves.


Assuntos
Claudinas/genética , Marcação de Genes/métodos , Vasos Linfáticos/metabolismo , Animais , Claudinas/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Tamoxifeno/farmacologia , Ativação Transcricional/efeitos dos fármacos , Transgenes
2.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34403370

RESUMO

Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.


Assuntos
Efrina-B2/genética , Receptor EphB4/genética , Receptor EphB4/metabolismo , Válvulas Venosas/anormalidades , Válvulas Venosas/embriologia , Animais , Aorta/ultraestrutura , Comunicação Celular , Polaridade Celular , Proliferação de Células , Conexina 43/metabolismo , Conexinas/metabolismo , Endotélio , Efrina-B2/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Ultrassonografia , Malformações Vasculares/diagnóstico por imagem , Malformações Vasculares/genética , Insuficiência Venosa/diagnóstico por imagem , Válvulas Venosas/diagnóstico por imagem , Proteína alfa-4 de Junções Comunicantes
3.
EMBO J ; 40(12): e107192, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33934370

RESUMO

The lymphatic system is composed of a hierarchical network of fluid absorbing lymphatic capillaries and transporting collecting vessels. Despite distinct functions and morphologies, molecular mechanisms that regulate the identity of the different vessel types are poorly understood. Through transcriptional analysis of murine dermal lymphatic endothelial cells (LECs), we identified Foxp2, a member of the FOXP family of transcription factors implicated in speech development, as a collecting vessel signature gene. FOXP2 expression was induced after initiation of lymph flow in vivo and upon shear stress on primary LECs in vitro. Loss of FOXC2, the major flow-responsive transcriptional regulator of lymphatic valve formation, abolished FOXP2 induction in vitro and in vivo. Genetic deletion of Foxp2 in mice using the endothelial-specific Tie2-Cre or the tamoxifen-inducible LEC-specific Prox1-CreERT2 line resulted in enlarged collecting vessels and defective valves characterized by loss of NFATc1 activity. Our results identify FOXP2 as a new flow-induced transcriptional regulator of collecting lymphatic vessel morphogenesis and highlight the existence of unique transcription factor codes in the establishment of vessel-type-specific endothelial cell identities.


Assuntos
Fatores de Transcrição Forkhead/genética , Linfangiogênese , Vasos Linfáticos , Proteínas Repressoras/genética , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , Morfogênese , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Repressoras/metabolismo , Estresse Mecânico
4.
Elife ; 92020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897857

RESUMO

Endothelial integrity is vital for homeostasis and adjusted to tissue demands. Although fluid uptake by lymphatic capillaries is a critical attribute of the lymphatic vasculature, the barrier function of collecting lymphatic vessels is also important by ensuring efficient fluid drainage as well as lymph node delivery of antigens and immune cells. Here, we identified the transmembrane ligand EphrinB2 and its receptor EphB4 as critical homeostatic regulators of collecting lymphatic vessel integrity. Conditional gene deletion in mice revealed that EphrinB2/EphB4 signalling is dispensable for blood endothelial barrier function, but required for stabilization of lymphatic endothelial cell (LEC) junctions in different organs of juvenile and adult mice. Studies in primary human LECs further showed that basal EphrinB2/EphB4 signalling controls junctional localisation of the tight junction protein CLDN5 and junction stability via Rac1/Rho-mediated regulation of cytoskeletal contractility. EphrinB2/EphB4 signalling therefore provides a potential therapeutic target to selectively modulate lymphatic vessel permeability and function.


Lymph vessels are thin walled tubes that, similar to blood vessels, carry white blood cells, fluids and waste. Unlike veins and arteries, however, lymph vessels do not carry red blood cells and their main function is to remove excess fluid from tissues. The cells that line vessels in the body are called endothelial cells, and they are tightly linked together by proteins to control what goes into and comes out of the vessels. The chemical, physical and mechanical signals that control the junctions between endothelial cells are often the same in different vessel types, but their effects can vary. The endothelial cells of both blood and lymph vessels have two interacting proteins on their membrane known as EphrinB2 and its receptor, EphB4. When these two proteins interact, the EphB4 receptor becomes activated, which leads to changes in the junctions that link endothelial cells together. Frye et al. examined the role of EphrinB2 and EphB4 in the lymphatic system of mice. When either EphrinB2 or EphB4 are genetically removed in newborn or adult mice, lymph vessels become disrupted, but no significant effect is observed on blood vessels. The reason for the different responses in blood and lymph vessels is unknown. The results further showed that lymphatic endothelial cells need EphB4 and EphrinB2 to be constantly interacting to maintain the integrity of the lymph vessels. Further examination of human endothelial cells grown in the laboratory revealed that this constant signalling controls the internal protein scaffold that determines a cell's shape and integrity. Changes in the internal scaffold affect the organization of the junctions that link neighboring lymphatic endothelial cells together. The loss of signalling between EphrinB2 and EphB4 in lymph vessels reflects the increase in vessel leakage seen in response to bacterial infections and in some genetic conditions such as lymphoedema. Finding ways to control the signalling between these two proteins could help treat these conditions by developing drugs that improve endothelial cell integrity in lymph vessels.


Assuntos
Células Endoteliais/metabolismo , Efrina-B2/genética , Homeostase , Junções Intercelulares/metabolismo , Vasos Linfáticos/fisiologia , Receptor EphB4/genética , Transdução de Sinais , Animais , Claudina-5/genética , Efrina-B2/metabolismo , Deleção de Genes , Camundongos , Receptor EphB4/metabolismo
5.
Biochem Biophys Res Commun ; 505(4): 1121-1127, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30316511

RESUMO

Calcium sensing receptor (CaSR) activates the NLRP3 inflammasome with consequences on homeostatic responses. However, little is known about how this process is orchestrated. Since proteolysis of critical regulators of NLRP3 inflammasome contribute to its activation, we aimed to understand how CaSR stimulates proteolytic pathways to activate the NLRP3 inflammasome. We found that proteasome and lysosome-dependent mechanisms are activated by CaSR to promote the degradation of important regulators of NLRP inflammasome. The pathway involves Gαq/PLC/PKC and Gßγ/PI3K signaling cascades and IRAK1 ubiquitination. In addition, CaSR stimulates Hsp70 expression activating a chaperone-assisted protein degradation that dictates the fate of ASC, NLRP3 (NOD-like receptor family protein 3), IRAK1 and TRAF6 proteins, turning on the NLRP3 inflammasome. In response to CaSR signaling, these proteins are degraded through the combination of CUPS (chaperone-assisted ubiquitin proteasome pathway) and CAEMI (chaperone-assisted endosomal microautophagy) systems being integrated by autophagosomes (chaperone-assisted macroautophagy, CAMA), as indicated by LC3-II, a classical marker for autophagy, that is induced in the process. Furthermore, CaSR triggers the proteolytic cleavage of pro-IL-1ß (IL-1ß, 31 kDa) into mature IL-1ß (IL-1ß, 17 kDa), via the proteasome. Taken together, our results indicate that CaSR promotes NLRP3 inflammasome activation and proteolytic maturation of IL-1ß by inducing CUPS and CAEMI, chaperone-assisted degradation pathways. Overall, these results support the inclusion of CaSR as an activator of homeostasis-altering molecular processes.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Inflamassomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Células Cultivadas , Células HEK293 , Humanos
6.
J Biol Chem ; 292(29): 12178-12191, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28600358

RESUMO

Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gßγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endotélio Vascular/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Acoplados a Proteínas G/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transporte Vesicular/química , Animais , Células COS , Adesão Celular , Células Cultivadas , Chlorocebus aethiops , Endotélio Vascular/citologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Pseudópodes/metabolismo , Interferência de RNA , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rac de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA