Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Negl Trop Dis ; 17(4): e0011199, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018175

RESUMO

BACKGROUND: Smallholder dairy farming is crucial for the Tanzanian dairy sector which generates income and employment for thousands of families. This is more evident in the northern and southern highland zones where dairy cattle and milk production are core economic activities. Here we estimated the seroprevalence of Leptospira serovar Hardjo and quantified potential risk factors associated with its exposure in smallholder dairy cattle in Tanzania. METHODS: From July 2019 to October 2020, a cross-sectional survey was carried out in a subset of 2071 smallholder dairy cattle. Information about animal husbandry and health management was collected from farmers, and blood was taken from this subset of cattle. Seroprevalence was estimated and mapped to visualize potential spatial hotspots. The association between a set of animal husbandry, health management and climate variables and ELISA binary results was explored using a mixed effects logistic regression model. RESULTS: An overall seroprevalence of 13.0% (95% CI 11.6-14.5%) for Leptospira serovar Hardjo was found in the study animals. There was marked regional variations with the highest seroprevalence in Iringa 30.2% (95% CI 25.1-35.7%) and Tanga 18.9% (95% CI 15.7-22.6) with odds ratios of OR = 8.13 (95% CI 4.23-15.63) and OR = 4.39 (95% CI 2.31-8.37), respectively. Multivariate analysis revealed the individual animal factors that were a significant risk for Leptospira seropositivity in smallholder dairy cattle were: animals over 5 years of age (OR = 1.41, 95% CI 1.05-1.9); and indigenous breed (OR = 2.78, 95% CI 1.47-5.26) compared to crossbred animals SHZ-X-Friesian (OR = 1.48, 95% CI 0.99-2.21) and SHZ-X-Jersey (OR = 0.85, 95% CI 0.43-1.63). Farm management factors significantly associated with Leptospira seropositivity included: hiring or keeping a bull for raising purposes (OR = 1.91, 95% CI 1.34-2.71); distance between farms of more than 100 meters (OR = 1.75, 95% CI 1.16-2.64); cattle kept extensively (OR = 2.31, 95% CI 1.36-3.91); farms without cat for rodent control (OR = 1.87, 95% CI 1.16-3.02); farmers with livestock training (OR = 1.62, 95% CI 1.15-2.27). Temperature (OR = 1.63, 95% CI 1.18-2.26), and the interaction of higher temperature and precipitation (OR = 1.5, 95%CI 1.12-2.01) were also significant risk factors. CONCLUSION: This study indicated seroprevalence of Leptospira serovar Hardjo, as well as the risk factors driving dairy cattle leptospirosis exposure in Tanzania. The study showed an overall high leptospirosis seroprevalence with regional variations, where Iringa and Tanga represented the highest seroprevalence and risk. The study highlighted the urgent need to understand the human exposures and risks from this important zoonosis to develop control measures and awareness of the problem and quantify the economic and production impacts through abortion and milk loss. In addition, given that the available data was limited to Leptospira serovar Hardjo, the study recommends more studies to identify serologically the most common serovars in cattle for targeted vaccination and risk reduction.


Assuntos
Doenças dos Bovinos , Leptospira interrogans , Leptospira , Leptospirose , Gravidez , Feminino , Bovinos , Masculino , Animais , Humanos , Sorogrupo , Tanzânia , Estudos Soroepidemiológicos , Estudos Transversais , Leptospirose/veterinária , Fatores de Risco , Criação de Animais Domésticos , Anticorpos Antibacterianos
2.
Vet Sci ; 10(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36851460

RESUMO

Bovine brucellosis is a bacterial zoonoses caused by Brucella abortus. We conducted a cross-sectional study to determine brucellosis seroprevalence and risk factors among smallholder dairy cattle across six regions in Tanzania. We sampled 2048 dairy cattle on 1374 farms between July 2019 and October 2020. Sera were tested for the presence of anti-Brucella antibodies using a competitive enzyme-linked immunosorbent assay. Seroprevalence was calculated at different administrative scales, and spatial tests were used to detect disease hotspots. A generalized mixed-effects regression model was built to explore the relationships among Brucella serostatus, animals, and farm management factors. Seroprevalence was 2.39% (49/2048 cattle, 95% CI 1.7-3.1) across the study area and the Njombe Region represented the highest percentage with 15.5% (95% CI 11.0-22.0). Moreover, hotspots were detected in the Njombe and Kilimanjaro Regions. Mixed-effects models showed that having goats (OR 3.02, 95% C 1.22-7.46) and abortion history (OR 4.91, 95% CI 1.43-16.9) were significant risk factors for brucellosis. Education of dairy farmers regarding the clinical signs, transmission routes, and control measures for brucellosis is advised. A One Health approach is required to study the role of small ruminants in cattle brucellosis and the status of brucellosis in dairy farmers in the Njombe and Kilimanjaro Regions.

3.
Vet Sci ; 9(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36548823

RESUMO

Q fever is a zoonotic disease, resulting from infection with Coxiella burnetii. Infection in cattle can cause abortion and infertility, however, there is little epidemiological information regarding the disease in dairy cattle in Tanzania. Between July 2019 and October 2020, a serosurvey was conducted in six high dairy producing regions of Tanzania. Cattle sera were tested for antibodies to C. burnetii using an indirect enzyme-linked immunosorbent assay. A mixed effect logistic regression model identified risk factors associated with C. burnetii seropositivity. A total of 79 out of 2049 dairy cattle tested positive with an overall seroprevalence of 3.9% (95% CI 3.06-4.78) across the six regions with the highest seroprevalence in Tanga region (8.21%, 95% CI 6.0-10.89). Risk factors associated with seropositivity included: extensive feeding management (OR 2.77, 95% CI 1.25-3.77), and low precipitation below 1000 mm (OR 2.76, 95% 1.37-7.21). The disease seroprevalence is relatively low in the high dairy cattle producing regions of Tanzania. Due to the zoonotic potential of the disease, future efforts should employ a "One Health" approach to understand the epidemiology, and for interdisciplinary control to reduce the impacts on animal and human health.

4.
Front Vet Sci ; 9: 947515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032291

RESUMO

Introduction: Bovine viral diarrhea virus (BVDV) causes reproductive inefficiencies and negatively impacts the economy of low- and middle-income countries (LMICs). It is characterized by a combination of syndromes that result in poor production performance and calf morbidity and mortality. BVDV control is possible by introduction of biosecurity measures, test-and-cull, and vaccination programs as accomplished in high-income countries. Knowledge of BVDV epidemiology is limited in many LMICs, which hinders implementation of effective control programs. We carried out a systematic review and meta-analysis to estimate the burden of BVDV, identify risk factors related to its occurrence, and health and economic impacts on production systems. Materials and Methods: Relevant BVD articles were collated from library databases; 690 abstracts and full texts were found in an initial search followed by filtering of 59 manuscripts. We accounted for quality and risk of bias in the meta-analysis. Prevalence, exposure, and current infection at regional, production, and farming system levels were estimated using logistic random-effects meta-regression models. Finally, we calculated the proportion of studies that addressed risk factors and health and economic impacts across different production systems to inform future preventative strategies in LMICs. Results: Seroprevalence was high and varied between regions. Mean weighted prevalence was 39.5% (95% CI 25-56.1), 45.2% (95% CI 35.9-54.8), 49.9% (95% CI 25.5-74.3), and 21.6% (95% CI 0.5-56) for sub-Saharan Africa, South America, Middle East, and Asia, respectively. Seroprevalence varied across farming systems, with smallholder farming showing the highest values. Herdsize was the most frequently reported risk factor, and the percentage of articles that reported herdsize as a risk factor were 20.6%, 33.3%, and 38.4% for dairy, beef and mixed systems respectively. Abortion (13.7% of articles) was the main reported health impact in dairy systems. Some articles reported milk drop (4.6% of articles), but no article investigated the economic cost of BVDV in farming systems. Conclusion: Animal-level seroprevalence varied across all regions. Most of the studies focused on BVDV seroprevalence. There were some articles that investigated risk factors and health impacts, and there were even less that investigated economic impacts. Future studies should focus on identifying risk factors and quantifying health and economic impacts across systems. Understanding these aspects is crucial to develop management strategies to apply across diverse production systems in LMICs.

5.
PLoS Genet ; 18(2): e1010019, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120121

RESUMO

Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.


Assuntos
Doença de Chagas/epidemiologia , Doença de Chagas/genética , Rhodnius/genética , Adaptação Biológica/genética , Animais , Vetores de Doenças , Ecossistema , Equador/epidemiologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Fluxo Gênico , Insetos Vetores/genética , Metagenômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Densidade Demográfica , Rhodnius/patogenicidade , Transcriptoma/genética , Trypanosoma cruzi/genética
6.
Lancet Infect Dis ; 19(5): e149-e161, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30799251

RESUMO

In the past 5-10 years, Venezuela has faced a severe economic crisis, precipitated by political instability and declining oil revenue. Public health provision has been affected particularly. In this Review, we assess the impact of Venezuela's health-care crisis on vector-borne diseases, and the spillover into neighbouring countries. Between 2000 and 2015, Venezuela witnessed a 359% increase in malaria cases, followed by a 71% increase in 2017 (411 586 cases) compared with 2016 (240 613). Neighbouring countries, such as Brazil, have reported an escalating trend of imported malaria cases from Venezuela, from 1538 in 2014 to 3129 in 2017. In Venezuela, active Chagas disease transmission has been reported, with seroprevalence in children (<10 years), estimated to be as high as 12·5% in one community tested (n=64). Dengue incidence increased by more than four times between 1990 and 2016. The estimated incidence of chikungunya during its epidemic peak is 6975 cases per 100 000 people and that of Zika virus is 2057 cases per 100 000 people. The re-emergence of many vector-borne diseases represents a public health crisis in Venezuela and has the possibility of severely undermining regional disease elimination efforts. National, regional, and global authorities must take action to address these worsening epidemics and prevent their expansion beyond Venezuelan borders.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Epidemias , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/transmissão , Animais , Controle de Doenças Transmissíveis , Doenças Transmissíveis Emergentes/prevenção & controle , Epidemias/prevenção & controle , Epidemias/estatística & dados numéricos , Geografia Médica , Humanos , Incidência , Doenças Transmitidas por Vetores/prevenção & controle , Venezuela/epidemiologia
7.
PLoS Negl Trop Dis ; 11(7): e0005710, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28723901

RESUMO

BACKGROUND: Rhodnius ecuadoriensis is the main triatomine vector of Chagas disease, American trypanosomiasis, in Southern Ecuador and Northern Peru. Genomic approaches and next generation sequencing technologies have become powerful tools for investigating population diversity and structure which is a key consideration for vector control. Here we assess the effectiveness of three different 2b restriction site-associated DNA (2b-RAD) genotyping strategies in R. ecuadoriensis to provide sufficient genomic resolution to tease apart microevolutionary processes and undertake some pilot population genomic analyses. METHODOLOGY/PRINCIPAL FINDINGS: The 2b-RAD protocol was carried out in-house at a non-specialized laboratory using 20 R. ecuadoriensis adults collected from the central coast and southern Andean region of Ecuador, from June 2006 to July 2013. 2b-RAD sequencing data was performed on an Illumina MiSeq instrument and analyzed with the STACKS de novo pipeline for loci assembly and Single Nucleotide Polymorphism (SNP) discovery. Preliminary population genomic analyses (global AMOVA and Bayesian clustering) were implemented. Our results showed that the 2b-RAD genotyping protocol is effective for R. ecuadoriensis and likely for other triatomine species. However, only BcgI and CspCI restriction enzymes provided a number of markers suitable for population genomic analysis at the read depth we generated. Our preliminary genomic analyses detected a signal of genetic structuring across the study area. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that 2b-RAD genotyping is both a cost effective and methodologically simple approach for generating high resolution genomic data for Chagas disease vectors with the power to distinguish between different vector populations at epidemiologically relevant scales. As such, 2b-RAD represents a powerful tool in the hands of medical entomologists with limited access to specialized molecular biological equipment.


Assuntos
Genótipo , Técnicas de Genotipagem/métodos , Insetos Vetores/classificação , Insetos Vetores/genética , Rhodnius/classificação , Rhodnius/genética , Animais , Análise Custo-Benefício , Equador , Genética Populacional , Técnicas de Genotipagem/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA