Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 15: 993671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245923

RESUMO

This review aims to describe the clinical spectrum of catatonia, in order to carefully assess the involvement of astrocytes, neurons, oligodendrocytes, and microglia, and articulate the available preclinical and clinical evidence to achieve a translational understanding of the cellular and molecular mechanisms behind this disorder. Catatonia is highly common in psychiatric and acutely ill patients, with prevalence ranging from 7.6% to 38%. It is usually present in different psychiatric conditions such as mood and psychotic disorders; it is also a consequence of folate deficiency, autoimmunity, paraneoplastic disorders, and even autistic spectrum disorders. Few therapeutic options are available due to its complexity and poorly understood physiopathology. We briefly revisit the traditional treatments used in catatonia, such as antipsychotics, electroconvulsive therapy, and benzodiazepines, before assessing novel therapeutics which aim to modulate molecular pathways through different mechanisms, including NMDA antagonism and its allosteric modulation, and anti-inflammatory drugs to modulate microglia reaction and mitigate oxidative stress, such as lithium, vitamin B12, and NMDAr positive allosteric modulators.

2.
Pharmaceutics ; 14(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35057048

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality. Consequences vary from mild cognitive impairment to death and, no matter the severity of subsequent sequelae, it represents a high burden for affected patients and for the health care system. Brain trauma can cause neuronal death through mechanical forces that disrupt cell architecture, and other secondary consequences through mechanisms such as inflammation, oxidative stress, programmed cell death, and, most importantly, excitotoxicity. This review aims to provide a comprehensive understanding of the many classical and novel pathways implicated in tissue damage following TBI. We summarize the preclinical evidence of potential therapeutic interventions and describe the available clinical evaluation of novel drug targets such as vitamin B12 and ifenprodil, among others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA