Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35537354

RESUMO

Polyunsaturated fatty acids (PUFA) play essential roles in cell membrane structure and physiological processes including signal transduction, cellular metabolism and tissue homeostasis to combat diseases. PUFA are either consumed from food or synthesized by enzymatic desaturation, elongation and peroxisomal ß-oxidation. The nutritionally essential precursors α-linolenic acid (C18:3n-3; ALA) and linoleic acid (C18:2n-6; LA) are subjected to desaturation by Δ6D/Δ5D desaturases and elongation by elongases 2/5, enzymes that are induced by insulin and repressed by PUFA. Maintaining an optimally low n-6/n-3 PUFA ratio is linked to prevention of the development of several diseases, including nonalcoholic fatty liver disease (NAFLD) that is characterized by depletion of PUFA promoting hepatic steatosis and inflammation. In this context, supplementation with n-3 PUFA revealed significant lowering of hepatic steatosis in obese patients, whereas prevention of fatty liver by high-fat diet in mice is observed in n-3 PUFA and hydroxytyrosol co-administration. The aim of this work is to review the role of nutritional status and nutrient availability on markers of PUFA biosynthesis. In addition, the impact of oxidative stress developed as a result of NAFLD, a redox imbalance that may alter the expression and activity of the enzymes involved, and diminished n-3 PUFA levels by free-radical dependent peroxidation processes will be discussed.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Ácido Linoleico/metabolismo , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estado Nutricional , Estresse Oxidativo
2.
Curr Med Chem ; 27(31): 5250-5272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30968772

RESUMO

BACKGROUND: Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by abnormal hepatic accumulation of triacylglycerides in the absence of alcohol consumption, in association with Oxidative Stress (OS), a pro-inflammatory state and Insulin Resistance (IR), which are attenuated by n-3 long-chain polyunsaturated Fatty Acids (FAs) C20-C22 (LCPUFAs) supplementation. Main causes of NAFLD comprise high caloric intake and a sedentary lifestyle, with high intakes of saturated FAs. METHODS: The review includes several searches considering the effects of n-3 LCPUFAs in NAFLD in vivo and in vitro models, using the PubMed database from the National Library of Medicine- National Institutes of Health. RESULT: The LCPUFAs eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n- 3, DHA) have a positive effect in diminishing liver steatosis, OS, and the levels of aspartate aminotransferase, alanine aminotransferase and pro-inflammatory cytokines, with improvement of insulin sensitivity and adiponectin levels. The molecular pathways described for n-3 LCPUFAs in cellular and animal models and humans include peroxisome proliferator-activated receptor-α activation favouring FA oxidation, diminution of lipogenesis due to sterol responsive element binding protein-1c downregulation and inflammation resolution. Besides, nuclear factor erythroid-2-related factor-2 activation is elicited by n-3 LCPUFA-derived oxidation products producing direct and indirect antioxidant responses, with concomitant anti-fibrogenic action. CONCLUSION: The discussed effects of n-3 LCPUFA supplementation support its use in NAFLD, although having a limited value in NASH, a contention that may involve n-3 LCPUFA oxygenated derivatives. Clinical trials establishing optimal dosages, intervention times, type of patients and possible synergies with other natural products are needed in future studies.


Assuntos
Ácidos Graxos Ômega-3 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos Graxos Insaturados , Humanos , Fígado , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
3.
Nutrition ; 45: 49-58, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29129237

RESUMO

OBJECTIVES: Iron is involved in processes involving oxygen transfer and utilization. Excess iron is linked to cardiovascular diseases and some types of cancer. Iron overload is associated with oxidative stress development, and may have important interactions with lipid metabolism in the liver favoring the development and progression of non-alcoholic fatty liver disease. The aim of the study described here was to assess the effect of high intake of iron on oxidative stress-related parameters, lipid metabolism, and levels of long-chain polyunsaturated fatty acids (LCPUFAs) in liver and other tissues of the rat. METHODS: Male Wistar rats (21 d old) were fed an iron-rich diet (200 mg iron/kg diet, IRD) versus a control diet (50 mg iron/kg diet; CD) for 21 d. Samples of erythrocytes, liver, adipose tissue, brain, heart, and testicles were evaluated for fatty acid composition and hepatic biochemical and oxidative stress parameters, Δ-6 and Δ-5 desaturase activities, SREBP-1c and PPAR-α mRNA expression and DNA-binding capacity, and lipolytic, lipogenic, and antioxidant enzymatic activities. RESULTS: The IRD caused liver steatosis and increased activity of plasma transaminases, with higher oxidative stress status in plasma and liver. Liver Δ-6 and Δ-5 desaturase exhibited decreased activity, but enhanced expression in response to the IRD compared with the CD, with lower levels of ω-3 and ω-6 LCPUFAs and higher expression and DNA binding of SREBP-1c, whereas expression and DNA-binding activity of PPAR-α were diminished. CONCLUSIONS: IRD induced oxidative stress and a reduction in the desaturation capacity of the liver, with LCPUFA depletion in the different tissues studied, thus promoting a pro-steatotic condition in the liver.


Assuntos
Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Sobrecarga de Ferro/fisiopatologia , Ferro/efeitos adversos , Lipogênese , Estresse Oxidativo , Animais , Catalase/genética , Catalase/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Ferro/administração & dosagem , Linoleoil-CoA Desaturase/genética , Linoleoil-CoA Desaturase/metabolismo , Fígado/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , PPAR alfa/genética , PPAR alfa/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
4.
Food Funct ; 8(4): 1526-1537, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28386616

RESUMO

SCOPE: Non-alcoholic fatty liver disease (NAFLD) is a condition characterized by an increment in the liver fat content, with a concomitant reduction in the content of n-3-long chain polyunsaturated fatty acids (n-3 LCPUFAs), downregulation of PPAR-α activity, and upregulation of NF-κB activity, effects that induce pro-lipogenic and pro-inflammatory responses. Hydroxytyrosol (HT), a polyphenol with cytoprotective effects present in extra virgin olive oil, improves the cellular antioxidant capacity for activation of transcription factor Nrf2. The objective of this work is to evaluate the molecular adaptations involved in the anti-lipogenic, anti-inflammatory, and anti-oxidant effects of HT supplementation in high-fat diet (HFD)-fed mice. METHODS AND RESULTS: Male C57BL/6J mice received (i) control diet (10% fat); (ii) control diet + HT (daily doses of 5 mg per kg body weight), (iii) HFD (60% fat); or (iv) HFD + HT for 12 weeks. HFD-fed mice exhibited (i) liver steatosis; (ii) inflammation; (iii) oxidative stress; and (iv) depletion of n-3 LCPUFAs, together with down-regulation of PPAR-α and Nrf2, and up-regulation of NF-κB. HT supplementation attenuated the metabolic alterations produced by HFD, normalizing the activity of Nrf2, reducing the drop in activity of PPAR-α, and attenuating increment of NF-κB activation. CONCLUSION: Supplementation with HT activating transcription factors PPAR-α and Nrf2, along with the deactivation of NF-κB, may reduce the liver alterations induced in HFD-fed mice.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/metabolismo , Álcool Feniletílico/análogos & derivados , Animais , Antioxidantes/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/genética , Álcool Feniletílico/administração & dosagem , Álcool Feniletílico/farmacologia
5.
Lipids Health Dis ; 16(1): 64, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28395666

RESUMO

BACKGROUND: Eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, C20:4n-6) are long-chain polyunsaturated fatty acids (LCPUFAs) with relevant roles in the organism. EPA and DHA are synthesized from the precursor alpha-linolenic acid (ALA, C18:3n-3), whereas AA is produced from linoleic acid (LA, C18:2n-6) through the action of Δ5 and Δ6-desaturases. High-fat diet (HFD) decreases the activity of both desaturases and LCPUFA accretion in liver and other tissues. Hydroxytyrosol (HT), a natural antioxidant, has an important cytoprotective effects in different cells and tissues. METHODS: Male mice C57BL/6 J were fed a control diet (CD) (10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks. Animals were daily supplemented with saline (CD) or 5 mg HT (HFD), and blood and the studied tissues were analyzed after the HT intervention. Parameters studied included liver histology (optical microscopy), activity of hepatic desaturases 5 and 6 (gas-liquid chromatography of methyl esters derivatives) and antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase by spectrophotometry), oxidative stress indicators (glutathione, thiobarbituric acid reactants, and the antioxidant capacity of plasma), gene expression assays for sterol regulatory element-binding protein 1c (SREBP-1c) (qPCR and ELISA), and LCPUFA profiles in liver, erythrocyte, brain, heart, and testicle (gas-liquid chromatography). RESULTS: HFD led to insulin resistance and liver steatosis associated with SREBP-1c upregulation, with enhancement in plasma and liver oxidative stress status and diminution in the synthesis and storage of n-6 and n-3 LCPUFAs in the studied tissues, compared to animals given control diet. HT supplementation significantly reduced fat accumulation in liver and plasma as well as tissue metabolic alterations induced by HFD. Furthermore, a normalization of desaturase activities, oxidative stress-related parameters, and tissue n-3 LCPUFA content was observed in HT-treated rats over control animals. CONCLUSIONS: HT supplementation prevents metabolic alterations in desaturase activities, oxidative stress status, and n-3 LCPUFA content in the liver and extrahepatic tissues of mice fed HFD.


Assuntos
Antioxidantes/uso terapêutico , Suplementos Nutricionais , Ácidos Graxos Dessaturases/metabolismo , Linoleoil-CoA Desaturase/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Álcool Feniletílico/análogos & derivados , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Dessaturases/química , Ácidos Graxos Ômega-3/agonistas , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/agonistas , Ácidos Graxos Ômega-6/metabolismo , Hidroxilação , Resistência à Insulina , Linoleoil-CoA Desaturase/química , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Especificidade de Órgãos , Estresse Oxidativo , Álcool Feniletílico/uso terapêutico , Distribuição Aleatória , Desmame
6.
Nutrition ; 32(11-12): 1254-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27346714

RESUMO

OBJECTIVE: The aim of this study was to assess the effect of dietary supplementation with extra virgin olive oil (EVOO) in mice on the reduction of desaturase and antioxidant enzymatic activities in liver, concomitantly with long-chain polyunsaturated fatty acids (LCPUFA) profiles in liver and extrahepatic tissues induced by a high-fat diet (HFD). METHODS: Male mice C57 BL/6 J were fed with a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or an HFD (60% fat, 20% protein, 20% carbohydrates) for 12 wk. Animals were supplemented with 100 mg/d EVOO with different antioxidant contents (EVOO I, II, and III). RESULTS: After the intervention, blood and several tissues were analyzed. Dietary supplementation with EVOO with the highest antioxidant content and antioxidant capacity (EVOO III) significantly reduced fat accumulation in liver and the plasmatic metabolic alterations caused by HFD and produced a normalization of oxidative stress-related parameters, desaturase activities, and LCPUFA content in tissues. CONCLUSIONS: Data suggest that dietary supplementation with EVOO III may prevent oxidative stress and reduction of biosynthesis and accretion of ω-3 LCPUFA in the liver of HFD-fed mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Fígado/metabolismo , Azeite de Oliva/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Azeite de Oliva/química , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Distribuição Tecidual
7.
Rev. chil. nutr ; 43(2): 196-205, jun. 2016. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-789450

RESUMO

La enfermedad por hígado graso no alcohólico (EHGNA) se asocia comúnmente con las características clínicas del síndrome metabólico como la obesidad, resistencia a la insulina y dislipidemia. La importancia clínica se debe a su elevada prevalencia (30% de la población general) y su amplio espectro de daño histológico que va desde la esteatosis simple generalmente no progresiva, a la esteatohepatitis no alcohólica, que puede conducir a cirrosis, carcinoma hepatocelular, e insuficiencia hepática. En la actualidad, se han caracterizado diferentes factores que conllevan a esta enfermedad hepática, destacándose principalmente el alto contenido de ácidos grasos libres y la resistencia a insulina. El exceso de ácidos grasos libres puede desencadenar lipotoxicidad hepática originada por un alto consumo de ácidos grasos saturados, ácidos grasos trans y carbohidratos, así como por un aumento de los radicales libres y del estrés del retículo endoplásmico. En lo que concierne a los ácidos grasos poliinsaturados de cadena larga n-3 (AGPICL n-3), se han atribuido múltiples beneficios para la salud humana. Los AGPICL n-3 EPA y DHA tienen efectos protectores en la salud cardiovascular y en la funcionalidad e integridad del sistema nervioso central. Actualmente el uso nutricional de ambos ácidos grasos es cada vez más amplio, atribuyendo sus efectos positivos no solamente al tratamiento de las enfermedades cardiovasculares y neurodegenerativas, sino también considerándolos una alternativa eficaz en el manejo de nutricional de la EHGNA. El presente trabajo analiza el uso potencial de los AGPICL n-3 en la prevención y manejo nutricional de la EHGNA.


Nonalcoholic fatty liver disease (NAFLD) is commonly associated with the clinical features of the metabolic syndrome including obesity, insulin resistance and dyslipidemia. NAFLD. Is of clinical relevance because its high prevalence (30% of the general population) and broad spectrum of histological damage, ranging from simple steatosis that is generally non progressive, to nonalcoholic steatohepatitis which can lead to cirrhosis, hepatoce-llular carcinoma, and liver failure. At present, different factors have been identified that lead to this liver disease, highlighting the high content of free fatty acids and insulin resistance. In this regard, excess of free fatty acids caused by a high intake of sa-turated fatty acids, trans fatty acids and of carbohydrates as well the increased formation free radicals that stress the endoplasmic reticulum, can trigger liver lipotoxicity. Regarding fatty acids, n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) have been associated to many benefits for human health. n-3 LCPUFA, such as EPA and DHA, have protective roles in cardiovascular health and in the functionality and integrity of the central nervous system. Currently, the possible therapeutic uses of these fatty acids is expanding, attributing their positive effects not only for the treatment of cardiovascular and neurodegenerative diseases, but also seeing it as an effective alternative in the management of NAFLD. The present review analyzes the potential use of n-3 LCPUFA in the treatment and protection of NAFLD.


Assuntos
Humanos , Dislipidemias , Ácidos Graxos Insaturados , Hepatopatia Gordurosa não Alcoólica , Lipídeos/toxicidade , Doenças Cardiovasculares , Obesidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-26995676

RESUMO

Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/química , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/química , Ácido alfa-Linolênico/administração & dosagem , Animais , Canfanos , Proteínas de Ligação a DNA/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Ácidos Graxos Dessaturases/metabolismo , Linoleoil-CoA Desaturase/metabolismo , Fígado/efeitos dos fármacos , Masculino , Panax notoginseng , Óleos de Plantas/administração & dosagem , Óleo de Brassica napus/administração & dosagem , Óleo de Brassica napus/química , Ratos , Rosa/química , Salvia miltiorrhiza , Óleo de Girassol/administração & dosagem , Óleo de Girassol/química , Regulação para Cima , Ácido alfa-Linolênico/farmacologia
9.
Food Funct ; 7(1): 140-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26471014

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by liver steatosis, oxidative stress, and drastic depletion of n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA), namely, eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA), which trigger lipolysis stimulation and lipogenesis inhibition. Extra virgin olive oil (EVOO) has important antioxidant effects. This study evaluated the anti-steatotic effects of n-3 LCPUFA plus EVOO in the liver of male C57BL/6J mice subjected to a control diet (CD) (10% fat, 20% protein, 70% carbohydrate) or high fat diet (HFD) (60% fat, 20% protein, 20% carbohydrate), without and with supplementation with n-3 LCPUFA (100 mg per kg per day) plus EVOO (100 mg per kg per day) for 12 weeks. HFD induced (i) liver steatosis (increased total fat, triacylglycerols, and free fatty acid total contents), (ii) higher fasting serum glucose and insulin levels and HOMA index, total cholesterol, triacylglycerols and TNF-α and IL-6, (iii) liver and plasma oxidative stress enhancement, (iv) depletion of the n-3 LCPUFA hepatic content, and (v) increment in lipogenic enzyme activity and reduction in lipolytic enzyme activity. These changes were either reduced (p < 0.05) or normalized to control the values in animals subjected to HFD supplemented with n-3 LCPUFA plus EVOO. In conclusion, n-3 LCPUFA plus EVOO intervention exerts anti-steatotic effects underlying antioxidant and anti-inflammatory responses, improved insulin sensitivity, and recovery of the lipolytic/lipogenic status of the liver altered by HFD, and supports the potential therapeutic use of n-3 LCPUFA plus EVOO supplementation in the treatment of human liver steatosis induced by nutritional factors or other etiologies.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Azeite de Oliva/administração & dosagem , Animais , Anti-Inflamatórios , Antioxidantes , Glicemia/análise , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Jejum , Insulina/sangue , Resistência à Insulina , Interleucina-6/sangue , Lipólise , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Estresse Oxidativo , Fator de Necrose Tumoral alfa/sangue
10.
Int J Mol Sci ; 16(10): 25168-98, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512643

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the main cause of liver disease worldwide. NAFLD is linked to circumstances such as type 2 diabetes, insulin resistance, obesity, hyperlipidemia, and hypertension. Since the obesity figures and related comorbidities are increasing, NAFLD has turned into a liver problem that has become progressively more common. Currently, there is no effective drug therapy for NAFLD; therefore, interventions in lifestyles remain the first line of treatment. Bearing in mind that adherence rates to this type of treatment are poor, great efforts are currently focused on finding novel therapeutic agents for the prevention in the development of hepatic steatosis and its progression to nonalcoholic steatohepatitis and cirrhosis. This review presents a compilation of the scientific evidence found in the last years showing the results of interventions in lifestyle, diet, and behavioral therapies and research results in human, animal and cell models. Possible therapeutic agents ranging from supplementation with vitamins, amino acids, prebiotics, probiotics, symbiotics, polyunsaturated fatty acids and polyphenols to interventions with medicinal plants are analyzed.


Assuntos
Dieta , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Animais , Humanos , Estilo de Vida , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Prebióticos
11.
Rev. chil. endocrinol. diabetes ; 8(4): 154-161, oct. 2015. tab, ilus
Artigo em Espanhol | LILACS | ID: biblio-831329

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is directly associated with insulin resistance and oxidative stress. In NAFLD is established a reduction in n-3 LCPUFA (EPA + DHA) levels and hepatic activity of transcription factor PPAR-alpha. EPA and DHA inhibit lipogenesis and stimulate fatty acid oxidation in the liver. Extra virgin olive oil (EVOO) has important antioxidant properties. This study evaluated the prevention of insulin resistance and prevention of depletion of hepatic antioxidant defense inC57BL/6J mice fed high-fat diet (HFD), supplemented with n-3 LCPUFA plus EVOO. HFD generated insulin resistance and hepatic steatosis, together with significant reduction in i) n-3 LCPUFA hepatic levels, ii) DNA binding activity of PPAR-alpha, iii) activity of antioxidant enzymes (catalase and superoxide dismutase), respect to control group (fed with control diet). Supplementation with n-3 LCPUFA plus EVOO prevent development insulin resistance and attenuate increased of fat in liver (p < 0.05), together with a normalization of i) DNA binding activity of PPAR-á, ii) activity of antioxidant enzymes (catalase and superoxide dismutase) and iii) reducing depletion of n-3 LCPUFA levels in liver tissue, compared to the control group (p < 0.05). Supplementation with n-3 LCPUFA plus EVOO reduced hepatic steatosis and prevent development of insulin resistance, along with preserving the antioxidant defense in liver. Projecting the use of this mixture of AGPICL n-3 plus EVOO as a potential treatment of NAFLD.


Assuntos
Masculino , Animais , Camundongos , Azeite de Oliva/uso terapêutico , /uso terapêutico , Dieta Hiperlipídica , Suplementos Nutricionais , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Azeite de Oliva/farmacologia , /farmacologia , Catalase , Catalase/fisiologia , Fígado , Estresse Oxidativo , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA